# **Hochspannungstechnik**



#### Notwendigkeit hoher Spannungen zur Energieübertragung

1. Charakteristik der Wirkleistungsübertragung in Drehstromsystemen

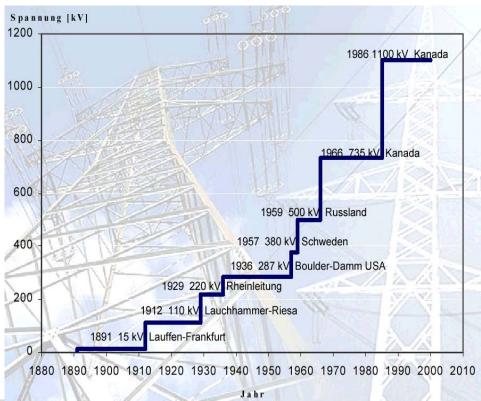
$$P = \begin{cases} \frac{U_1 \cdot U_2}{Z_0 \cdot \sin(2\pi \frac{\ell}{\lambda})} \cdot \sin(9) & \text{lange Leitung (Länge $\ell$, Wellenwiderstand $Z_0$, Wellenlänge $\lambda$)} \\ \frac{U_1 \cdot U_2}{X} \cdot \sin(9) & \text{kurze Leitung (Reaktanz $X$)} \end{cases}$$

2. Verluste bei der Energieübertragung

$$P_V = R \cdot I^2 \quad U \uparrow \Rightarrow (P = \sqrt{3} \cdot U \cdot I) \Rightarrow I \downarrow \Rightarrow P_V \downarrow$$

#### **Derzeitige Trends:**

- Übertragungsspannungen von
   ± 800 kV (DC) für HGÜ-Anlagen in China
- Übertragungsspannung von 1000 kV (AC) für Energiefernübertragung (China)



# Spannungsbeanspruchungen von Betriebsmitteln im Netzbetrieb



#### Niederfrequente Spannungen

- dauernd: Normalbetrieb

- zeitweilig: fehlerhafte

Betriebszustände

#### **Transiente Spannungen**

Werden unterschieden nach Anstiegszeit

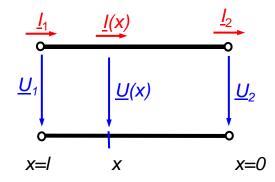
- langsam (einige 100 μs)
- schnell (einige μs)
- sehr schnell (3...100ns)

| Kategorie                         | niederfrequent                                             |                                                                  | transient                                                         |                                                                |                                                                                                           |  |
|-----------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                                   | dauernd                                                    | zeitweilig                                                       | langsamer<br>Anstieg                                              | schneller<br>Anstieg                                           | sehr schneller<br>Anstieg                                                                                 |  |
| Spannungs-<br>form                | $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array}$ |                                                                  | Ι <sub>ρ</sub> Ι <sub>γ</sub> Ι <sub>γ</sub>                      | -T <sub>1</sub>                                                | $\begin{array}{c} 1/f_1 \\ 1/f_2 \\ \hline \end{array}$                                                   |  |
| Zeitbereich                       | f = 50 Hz<br>oder<br>f = 60 Hz                             | 10 Hz < $f$<br>< 500 Hz<br>3600 s $\geq$<br>$T_t \geq 0.03$ s    | 5000 $\mu$ s $\geq$ $T_p > 20 \mu$ s $T_2 \leq 20 \text{ ms}$     | 20 $\mu$ s $\geq T_1$<br>> 0,1 $\mu$ s<br>$T_2 \leq 300 \mu$ s | 100 ns $\geq T_f > 3$ ns<br>0,3 MHz $< f_1$<br>< 100 MHz<br>30 kHz $< f_2$<br>< 300kHz<br>$T_1 \leq 3$ ms |  |
| Ursachen<br>(s. Text)             |                                                            | Erdfehler,<br>Lastabwurf,<br>Ferranti-Effekt                     | Schaltvorgänge,<br>ferne<br>Blitzeinschläge                       | Schaltvorgänge,<br>direkte<br>Blitzeinschläge                  | Schaltvorgänge<br>und Fehler<br>in gasisolierten<br>Schaltanlagen                                         |  |
| Genormte<br>Spannungs-<br>form    | f= 50 Hz<br>oder<br>f= 60 Hz<br>$T_{\rm t}^{\ a}$          | $48 \text{ Hz} \ge f$ $\le 62 \text{ Hz}$ $T_{t} = 60 \text{ s}$ | $T_{\rm p} = 250 \; \mu \text{s}$<br>$T_2 = 2500 \; \mu \text{s}$ | $T_1 = 1.2 \mu\text{s}$<br>$T_2 = 50 \mu\text{s}$              | a                                                                                                         |  |
| Genormte<br>Spannungs-<br>prüfung |                                                            | Kurzzeit-<br>Wechsel-<br>spannungs-<br>prüfung                   | Schaltstoß-<br>Spannungs-<br>prüfung                              | Blitzstoß-<br>Spannungs-<br>prüfung                            | a                                                                                                         |  |

<sup>&</sup>lt;sup>a</sup> Festzulegen durch das zuständige Gerätekomitee.

# Wanderwellen auf Leitungen



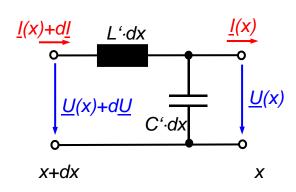


#### **Partielles Differentialgleichungssystem:**

$$\frac{\partial^2 u}{\partial x^2} - \dot{L}'\dot{C}' \cdot \frac{\partial^2 u}{\partial t^2} = 0 \qquad \text{und} \qquad \frac{\partial^2 i}{\partial x^2} - \dot{L}'\dot{C}' \cdot \frac{\partial^2 i}{\partial t^2} = 0$$

#### Lösung:

 $u_v(x-v\cdot t)$  und  $i_v(x-v\cdot t)$ : einem vorwärts laufenden Anteil, der sich in positive x-Richtung ausbreitet (x > 0),



 $u_r(x+v\cdot t)$  und  $i_r(x+v\cdot t)$ : einem rückwärts laufenden Anteil, der sich in negative x-Richtung ausbreitet (x < 0).

$$u(x,t) = u_{v}(x-v \cdot t) + u_{r}(x+v \cdot t)$$

$$i(x,t) = \frac{1}{Z} [u_{v}(x-v \cdot t) - u_{r}(x+v \cdot t)] = i_{v}(x-v \cdot t) + i_{r}(x+v \cdot t)$$

 $v = \frac{1}{\sqrt{L \cdot C}} \qquad Z = \sqrt{\frac{L}{C}}$ 

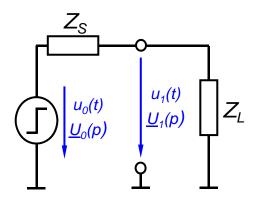
u(x,t) setzt sich an jedem Ort x und zu jedem Zeitpunkt t zusammen aus

- 1. einer vorlaufenden Welle  $u_{\nu}(x-v\cdot t)$
- 2. einer rücklaufenden Welle  $u_r(x+v\cdot t)$

einfachste Vorstellung  $u_v(x-vt)$  ist eine Rechteckwelle

# Wellenersatzschaltbild, Einlauffaktor, **Brechung und Reflexion (I)**





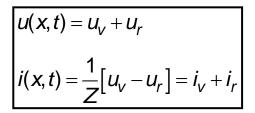
Rechteckwelle läuft in eine Leitung ein, Quellenimpedanz ist  $Z_{\rm S}$ , die Welle "sieht" den Wellenwiderstand  $Z_{\rm L}$ 

$$Z_{S}, \text{ die Welle "sieht" den Wellenwiderstand } Z_{L}$$

$$\underline{Z}_{L}$$

$$\underline{X}(p) = \underline{\underline{U}_{1}(p)} = \underline{\underline{Z}_{L}} \quad \text{und} \quad X = \underline{\underline{U}_{1}(p)} = \underline{\underline{U}_{1}(p)} = \underline{Z}_{L}$$

$$\underline{Y}(p) = \underline{\underline{U}_{1}(p)} = \underline{\underline{Z}_{L}} \quad \text{und} \quad X = \underline{\underline{U}_{1}(p)} = \underline{$$

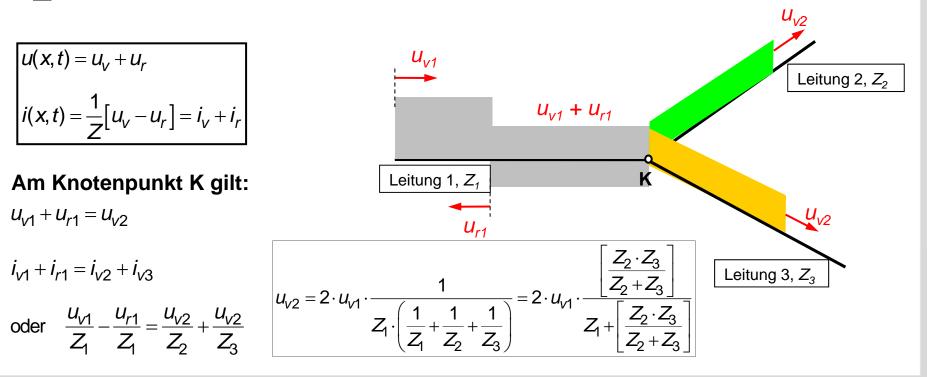


# Am Knotenpunkt K gilt:

$$U_{v1} + U_{r1} = U_{v2}$$

$$i_{v1} + i_{r1} = i_{v2} + i_{v3}$$

oder 
$$\frac{u_{v1}}{Z_1} - \frac{u_{r1}}{Z_1} = \frac{u_{v2}}{Z_2} + \frac{u_{v2}}{Z_3}$$

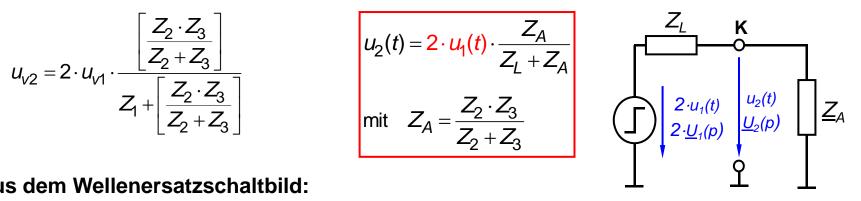


# Wellenersatzschaltbild, Einlauffaktor, **Brechung und Reflexion (II)**



$$u_{v2} = 2 \cdot u_{v1} \cdot \frac{\left[\frac{Z_2 \cdot Z_3}{Z_2 + Z_3}\right]}{Z_1 + \left[\frac{Z_2 \cdot Z_3}{Z_2 + Z_3}\right]}$$

$$u_2(t) = \frac{2 \cdot u_1(t)}{Z_L + Z_A}$$
mit  $Z_A = \frac{Z_2 \cdot Z_3}{Z_2 + Z_3}$ 



#### Aus dem Wellenersatzschaltbild:

$$\underline{U}_{2}(p) = \frac{\underline{Z}_{A}}{Z_{L} + \underline{Z}_{A}} \cdot 2\underline{U}_{1}(p) = \frac{1}{1 + \frac{Z_{L}}{\underline{Z}_{A}}} \cdot 2\underline{U}_{1}(p) = \underline{C}(p) \cdot \underline{U}_{1}(p) \quad \text{d.h.} \quad \underline{C}(p) = \frac{2}{1 + \frac{Z_{L}}{\underline{Z}_{A}}}$$

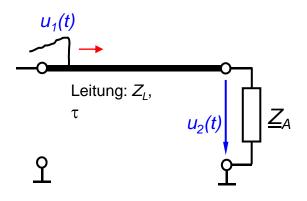
*C(p)* wird als Brechungsfaktor bezeichnet

Die Spannung  $U_2(p)$  am Ende der Leitung ist die Summe aus der vorlaufenden und der rücklaufenden Welle

$$\underline{U}_{2}(p) = \frac{2}{1 + \frac{Z_{L}}{Z_{A}}} \cdot \underline{U}_{1}(p) \qquad 1 - \frac{Z_{L}}{Z_{A}} \cdot \underline{U}_{1}(p) = \underline{R}(p) \cdot \underline{U}_{1}(p)$$

$$= \underline{U}_{V} + \underline{U}_{r} = \underline{U}_{1}(p) + \underline{U}_{r}$$

$$= \underline{U}_{V} + \underline{U}_{r} = \underline{U}_{1}(p) + \underline{U}_{r}$$
Reflexions faktor:  $\underline{R}(p) = \underline{Z}_{A} - Z_{L}$ 



Spannungen sind auch für frequenzabhängige Impedanzen (L, C) berechenbar

# Schaltüberspannungen (Innere Überspannungen)

 $u_0(t)$ 



Innere Überspannungen:

durch Schalthandlungen im Energieversorgungsnetz verursacht

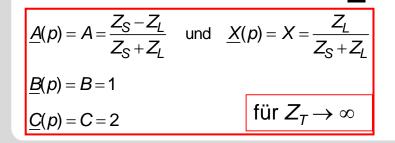
Schaltüberspannungen sind besonders ausgeprägt, wenn ein Betriebsmittel über eine

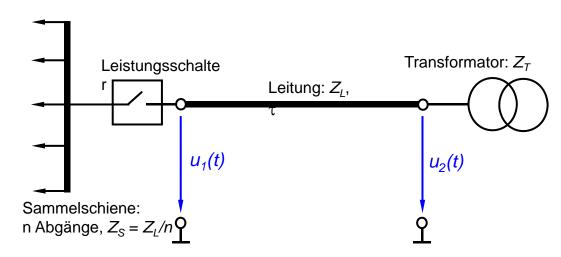
#### Stichleitung

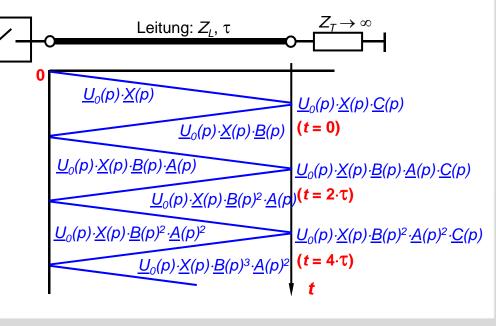
zugeschaltet wird

Modellierung des Transformators:

- Leerlauf,  $Z_T \rightarrow \infty$
- besser: Kapazität 2...4 nF







# Schaltüberspannungen (Innere Überspannungen)



#### Spannung am Transformator:

$$u_{2}(t) = X \cdot C \cdot \left[ s(t) \cdot U_{0} \right]$$

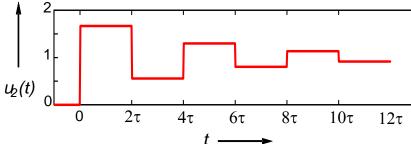
$$+ X \cdot C \cdot A \cdot B \cdot \left[ s(t - 2\tau) \cdot U_{0} \right]$$

$$+ X \cdot C \cdot A^{2} \cdot B^{2} \cdot \left[ s(t - 4\tau) \cdot U_{0} \right]$$

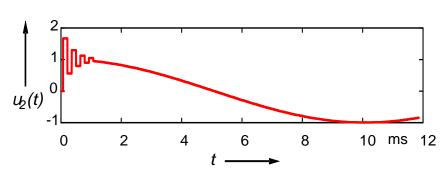
$$+ X \cdot C \cdot A^{3} \cdot B^{3} \cdot \left[ s(t - 6\tau) \cdot U_{0} \right]$$

$$+ X \cdot C \cdot A^{4} \cdot B^{4} \cdot \left[ s(t - 8\tau) \cdot U_{0} \right] + \dots$$





$$u_2(t) = \left[\frac{5}{3} \cdot s(t) - \frac{10}{9} \cdot s(t - 2\tau) + \frac{20}{27} \cdot s(t - 4\tau) - \frac{40}{81} \cdot s(t - 6\tau) + \frac{80}{243} \cdot s(t - 8\tau) - \dots\right] \cdot U_0$$



$$Z_{L} = 350 \Omega$$

$$Z_{S} = 70 \Omega$$

$$A = -2/3$$

$$B = 1$$

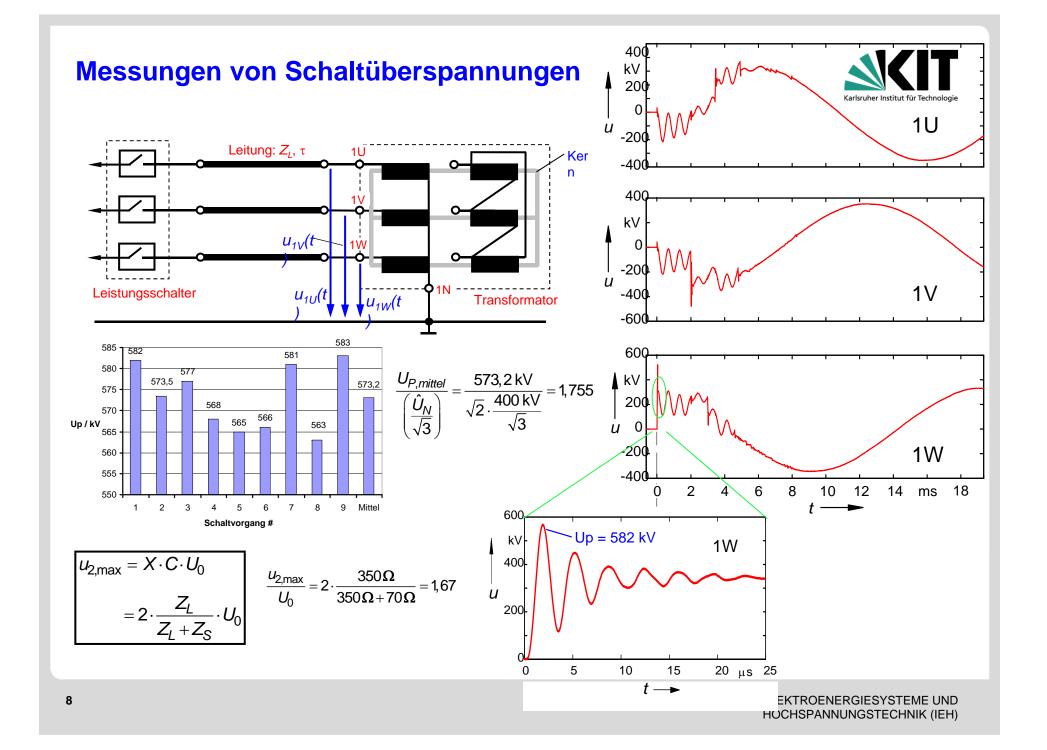
$$C = 2$$

$$X = 5/6$$

$$u_{2}(t) = U_{0} \cdot \begin{cases} \frac{5}{3} & \text{für } 0 \le t \le 2\tau \\ \frac{5}{3} - \frac{10}{9} & \text{für } 2\tau \le t \le 4\tau \end{cases}$$

$$u_{2}(t) = U_{0} \cdot \begin{cases} \frac{5}{3} - \frac{10}{9} + \frac{20}{27} & \text{für } 4\tau \le t \le 6\tau \\ \frac{5}{3} - \frac{10}{9} + \frac{20}{27} - \frac{40}{81} & \text{für } 6\tau \le t \le 8\tau \end{cases}$$

$$\frac{5}{3} - \frac{10}{9} + \frac{20}{27} - \frac{40}{81} + \frac{80}{243} & \text{für } 8\tau \le t \le 10\tau$$

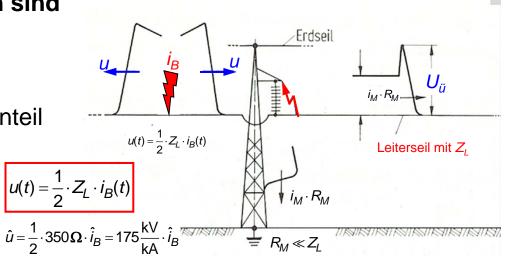


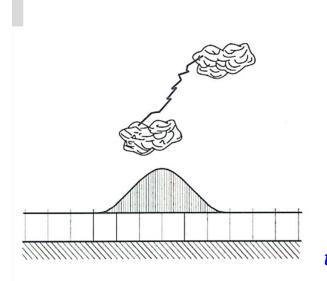
# Blitzüberspannungen

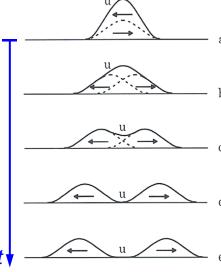


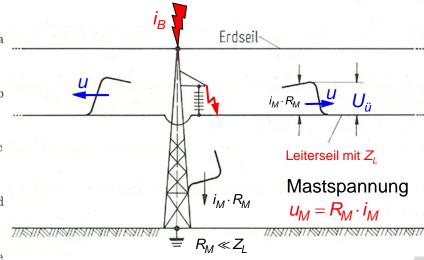
# Ursachen für äußere Überspannungen sind

- direkter Blitzeinschlag in das Leiterseil einer Freileitung,
- Blitzeinschlag in ein geerdetes Anlagenteil mit rückwärtigem Überschlag auf den Betriebsstromkreis,
- induzierte Spannungen infolge von nahen Blitzeinschlägen







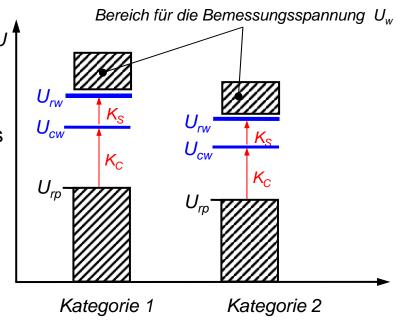


# **Isolationskoordination (I)**



#### Ziel der Isolationskoordination:

Abstimmung der Spannungsfestigkeit von
Betriebsmitteln mit den im Netz auftretenden
Überspannungen und den sonstigen Randbedingungen (Gewitterwahrscheinlichkeit), so dass
die Durchschlagwahrscheinlichkeit auf ein
wirtschaftlich und betriebstechnisch sinnvolles
Maß reduziert wird



# 1. Bestimmung der repräsentativen Überspannungen $U_{rp}$

Spannungskategorie

Bestimmung der Überspannungen in den Spannungskategorien

- niederfrequente Spannungen (dauernd, zeitweilig)
- transiente Spannungen (langsam, schnell, sehr schnell)

für Normalbetrieb und Störungen (Erdfehler, Lastabwurf, Resonanzerscheinungen etc.)

z. B. aus Netzanalysen und -berechnungen oder Messungen

# **Isolationskoordination (II)**



## 2. Bestimmung der Koordinations-Stehspannungen $U_{cw}$

Die Koordinations-Stehspannungen ergeben sich

durch  $U_{cw} = K_C \cdot U_{rp}$ 

Durch  $U_{cw}$  wird die elektrische Festigkeit des Isolationssystems so festgelegt, dass sich im Netzbetrieb akzeptable Ausfälle (Durchschlagsraten) ergeben

 $K_C$  wird aus statistischen Betrachtungen bestimmt

# Bereich für die Bemessungsspannung U<sub>w</sub> U<sub>rw</sub> V<sub>cw</sub> V<sub>cw</sub> K<sub>c</sub> U<sub>rp</sub> Kategorie 1 Kategorie 2 ...

#### 3. Bestimmung der Stehspannungen $U_{rw}$

Der Faktor  $K_S$  berücksichtigt Unterschiede zwischen Betriebs- und Prüfbedingungen

$$U_{rw} = K_{S} \cdot U_{cw} = K_{S} \cdot K_{C} \cdot U_{rp}$$

Spannungskategorie

Dies sind

- unterschiedliche atmosphärische Bedingungen (Luftdruck, Luftfeuchtigkeit)
- Fertigungstoleranzen, Streuung der Produktqualität
- Degradation des Isolationssystems durch Alterung

$$K_{S} = \begin{cases} 1,15 & \text{innere Isolierung} \\ 1,05 & \text{äußere Isolierung} \end{cases}$$

# **Isolationskoordination (III)**



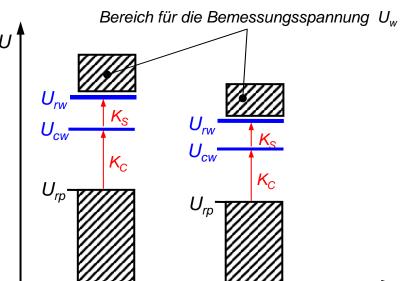
# 4. Auswahl eines genormten Isolationspegels (Bemessungsspannung) $U_w$

Auswahl der Bemessungsspannungen  $U_w$  aus genormten Werten für die verschiedenen Spannungskategorien so, dass für alle erforderlichen Stehspannungen gilt:  $U_w > U_{rw}$ 

| Höchste Spannung für Betriebsmittel $U_{\mathrm{m}}$ | Bemes                           |                    |                                               |                                  |
|------------------------------------------------------|---------------------------------|--------------------|-----------------------------------------------|----------------------------------|
|                                                      | Längsisolation<br>(Anmerkung 1) | Leiter-Erde        | Verhältnis<br>Leiter-Leiter<br>zu Leiter-Erde | Bemessungs-Blitz<br>stoßspannung |
| kV<br>Effektivwert                                   | kV<br>Scheitelwert              | kV<br>Scheitelwert | Scheitelwert                                  | kV<br>Scheitelwert               |
| 300                                                  | 750                             | 750                | 1,50                                          | 859<br>950                       |
|                                                      | 750                             | 850                | 1,50                                          | 950<br>1050                      |
| 362                                                  | 850                             | 850                | 1,50                                          | 050<br>1050                      |
|                                                      | 850                             | 950                | 1,80                                          | 1050<br>1175                     |

Prüfspannungspegel

Kombination von Bemessungsspannungen  $U_w$  = Isolationspegel dem zugeordnet ist eine Spannung  $U_m$  (höchste Spannung für Betriebsmittel)



Kategorie 1 Kategorie 2

#### Snanni innskatenorie

# **Beanspruchung von Isolationssystemen** durch das elektrische Feld



#### Die Maxwell'schen Gleichungen

Durchflutungsgesetz (Ladungserhaltung)

$$rot \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\operatorname{rot} \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \qquad \qquad \oint_{\mathbf{C}} \mathbf{H} \cdot d\mathbf{s} = \iint_{\mathbf{A}} \left[ \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right] \cdot d\mathbf{A} \qquad \qquad \operatorname{rot} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \qquad \oint_{\mathbf{C}} \mathbf{E} \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \iint_{\mathbf{A}} \mathbf{B} \cdot d\mathbf{A}$$

Magnetisches Feld ist quellenfrei

$$\int_{A} \mathbf{B} \cdot d\mathbf{A} = 0$$

Materialgleichungen: 
$$\mathbf{D} = \varepsilon_0 \cdot \varepsilon_r \cdot \mathbf{E}$$
  $\mathbf{B} = \mu_0 \cdot \mu_r \cdot \mathbf{H}$   $\mathbf{J} = \kappa \cdot \mathbf{E}$ 

$$rot \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\oint_{C} \mathbf{E} \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \int_{A} \mathbf{B} \cdot d\mathbf{A}$$

Elektrisches Feld ist ein Quellenfeld

$$\mathsf{div}\, \boldsymbol{D} = \rho$$

$$\int_{A} \mathbf{D} \cdot d\mathbf{A} = \int_{V} \rho \cdot dV$$

$$\mathbf{B} = \mu_0 \cdot \mu_r \cdot \mathbf{H}$$

$$J = \kappa \cdot E$$

#### Statische, stationäre und langsam veränderliche Felder

Das elektrische Feld kann als Quellenfeld angesehen werden, ein induziertes elektrisches Feld tritt nicht auf bzw. kann vernachlässigt werden ⇒ kein magnetisches Feld

$$\operatorname{div} \mathbf{D} = \rho \qquad \qquad \int_{A} \mathbf{D} \cdot d\mathbf{A} = Q = \int_{V} \rho \cdot dV$$

oder  $\oint \mathbf{E} \cdot d\mathbf{s} = 0$ Aus rot  $\boldsymbol{E} = 0$ folgt für das Potential

$$\varphi(\mathbf{r}) = \varphi_0 - \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{E} \cdot d\mathbf{r}$$
 oder  $\mathbf{E} = -\operatorname{grad} \varphi$ 

Poisson-Gleichung div grad 
$$\varphi = -\frac{\rho}{\varepsilon_0 \cdot \varepsilon_r} = \Delta \varphi$$

$$\Delta \phi = 0$$

Laplace-Gleichung 
$$\Delta \phi = 0$$
  $\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$ 

# Methoden zur Berechnung elektrischer Felder



#### analytische Verfahren

# • Direkte Lösung der Poisson-Gleichung oder der Laplace-Gleichung:

Direkte Integration der Laplace- oder Poisson-Gleichung, jedoch nur für einfache Geometrien anwendbar

#### • Ladungsverfahren:

Mit der Beziehung 
$$\int_{A} \mathbf{D} \cdot d\mathbf{A} = \mathbf{Q}$$

lassen sich zylinder- und kugelsymmetrische Anordnungen sehr einfach berechnen.

Zunächst wird eine unbekannte Ladung Q auf den Elektroden angenommen, dann wird die dielektrische Verschiebung D und die elektrische Feldstärke E berechnet. Die Spannung U ist das Wegintegral über die Feldstärke E, dadurch kann die unbekannte Ladung Q eliminiert werden

#### Konforme Abbildung:

Teilbereich der Funktionentheorie komplexer Veränderlicher

Idee: Transformation einer komplizierten Geometrie in der x-y-Ebene in die u-v-Ebene dort einfach lösbar, dann Rücktransformation

Konforme Abbildung war von Bedeutung bis numerische Verfahren aufkamen

# Methoden zur Berechnung elektrischer Felder



#### numerische Verfahren

#### Ersatzladungsverfahren:

es werden punktförmige Ersatzladungen so definiert, dass sich durch Überlagerung der Ersatzladungen an den Elektrodenkonturen Äquipotentialflächen und damit definierte Potentiale ergeben

#### • Finite-Differenzen-Verfahren:

Der Feldraum wird diskretisiert, durch Diskretisierung der Potentialgleichung (Poisson- oder Laplace-Gleichung) kann diese schrittweise gelöst werden

#### • Finite-Elemente-Verfahren:

Das am weitesten verbreitete Verfahren zur Lösung der Potentialgleichung, eignet sich für viele Arten von Strömungsfeldern (thermische, magnetische, elektrische, ...)

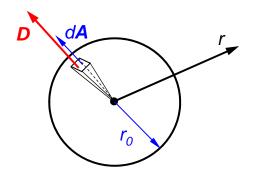
# **Kugelsymmetrische Isoliersysteme – Abschirmelektroden (I)**



Auf einer Metallkugel mit dem Radius  $r_0$  befindet sich die Ladung Q

$$Q = \int_{A} \mathbf{D} \cdot d\mathbf{A} = D(r) \cdot 4\pi \cdot r^{2} = (E(r) \cdot \varepsilon_{0} \cdot \varepsilon_{r}) \cdot 4\pi \cdot r^{2}$$

außerhalb der Kugelelektrode in der Luft mit  $\epsilon_{r,Luft} \approx 1$ :



Elektrische Feldstärke: 
$$E(r) = \frac{Q}{4\pi \cdot \varepsilon_0} \cdot \frac{1}{r^2}$$

Potential: 
$$\varphi(r) = \varphi(r) = \varphi_0 - \int_{r_1}^{r_2} \mathbf{E} \cdot d\mathbf{r} = \varphi_0 - \int_{r_0}^{r} E(r) \cdot dr = \varphi_0 - \int_{r_0}^{r} \frac{Q}{4\pi \cdot \varepsilon_0 \cdot r^2} \cdot dr$$

$$= \varphi_0 - \frac{Q}{4\pi \cdot \varepsilon_0} \cdot \left[ -\frac{1}{r} \right]_{r_0}^{r} = \varphi_0 - \frac{Q}{4\pi \cdot \varepsilon_0} \left( -\frac{1}{r} + \frac{1}{r_0} \right)$$

$$= \varphi_0 + \frac{Q}{4\pi \cdot \varepsilon_0} \left( \frac{1}{r} - \frac{1}{r_0} \right)$$

Zwischen den Elektroden eines Kugelkondensators mit den Radien  $R_i$  und  $R_a$  liegt die Spannung U:

$$U = \varphi(R_i) - \varphi(R_a) = \varphi_0 - \varphi_0 - \frac{Q}{4\pi \cdot \varepsilon_0} \left( \frac{1}{R_a} - \frac{1}{R_i} \right) = \frac{Q}{4\pi \cdot \varepsilon_0} \left( \frac{1}{R_i} - \frac{1}{R_a} \right)$$

# **Kugelsymmetrische Isoliersysteme**

# Abschirmelektroden (II)



Zwischen den Elektroden eines Kugelkondensators mit den Radien  $R_i$ und R<sub>a</sub> liegt die Spannung *U*:

$$U = \varphi(R_i) - \varphi(R_a) = \varphi_0 - \varphi_0 - \frac{Q}{4\pi \cdot \varepsilon_0} \left( \frac{1}{R_a} - \frac{1}{R_i} \right) = \frac{Q}{4\pi \cdot \varepsilon_0} \left( \frac{1}{R_i} - \frac{1}{R_a} \right)$$

Kapazität eines Kugelkondensators:

$$C = \frac{|Q|}{|U|} = \frac{Q}{\frac{Q}{4\pi \cdot \varepsilon_0} \left(\frac{1}{R_i} - \frac{1}{R_a}\right)} = 4\pi \cdot \varepsilon_0 \frac{R_a \cdot R_i}{R_a - R_i}$$

Kapazität einer Kugelelektrode im freien Raum, d. h. für  $R_a \rightarrow \infty$ :

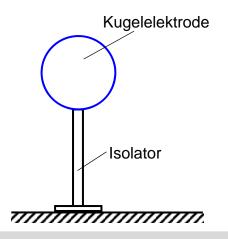
$$C = \frac{Q}{\frac{Q}{4\pi \cdot \varepsilon_0} \left(\frac{1}{R_i} - \frac{1}{R_a}\right)} = 4\pi \cdot \varepsilon_0 \cdot R_i$$

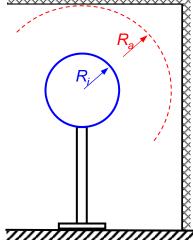
Feldstärke E(r) in einem Kugelkondensator

$$E(r) = \frac{Q}{4\pi \cdot \varepsilon_0 \cdot r^2} = \frac{1}{4\pi \cdot \varepsilon_0 \cdot r^2} \cdot \frac{4\pi \cdot \varepsilon_0}{\left(\frac{1}{R_i} - \frac{1}{R_a}\right)} \cdot U = U \cdot \frac{R_a \cdot R_i}{R_a - R_i} \cdot \frac{1}{r^2}$$

Maximale Feldstärke **Elektrode** 

Maximale Feldstarke
$$E_{\text{max}} \text{ an der inneren } E_{\text{max}} = E(r = R_i) = \frac{U}{R_a - R_i} \cdot \frac{R_a}{R_i}$$





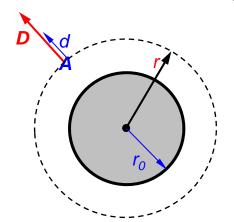
# **Zylindersymmetrische Isoliersysteme**

# - Kabel und Durchführungen (I)



Auf einer Zylinder mit dem Radius  $r_0$ befindet sich die Ladung Q

$$Q = \int_{A} \mathbf{D} \cdot d\mathbf{A} = D(r) \cdot 2\pi \cdot r \cdot \ell = (E(r) \cdot \varepsilon_{0} \cdot \varepsilon_{r}) \cdot 2\pi \cdot r \cdot \ell$$



außerhalb der Kugelelektrode in der Luft mit  $\epsilon_{r,Luft} \approx$  1:

Elektrische Feldstärke:  $E(r) = \frac{Q_{\ell}}{2\pi \cdot s \cdot s} \cdot \frac{1}{r}$ 

$$E(r) = \frac{Q/\sqrt{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r}}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{1}{r}$$

Potential: 
$$\phi(r) = \phi_0 - \int_{r_0}^r E(r) \cdot dr = \phi_0 - \int_{r_0}^r \frac{Q}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{1}{r} \cdot dr = \phi_0 - \frac{Q}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \left[\ln r\right]_{r_0}^r$$

$$= \phi_0 - \frac{Q}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \ln\left(\frac{r}{r_0}\right)$$

Zwischen den Elektroden eines Zylinderkondensators mit den Radien  $R_i$  und  $R_a$  liegt die Spannung *U*:

$$U = \varphi(R_i) - \varphi(R_a) = \varphi_0 - \varphi_0 + \frac{Q}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \ln\left(\frac{R_a}{R_i}\right) = \frac{Q}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \ln\left(\frac{R_a}{R_i}\right)$$

# **Zylindersymmetrische Isoliersysteme**

# - Kabel und Durchführungen (II)



Zwischen den Elektroden eines Zylinderkondensators mit den Radien  $R_i$  und  $R_a$  liegt die Spannung *U*:

$$U = \varphi(R_i) - \varphi(R_a) = \varphi_0 - \varphi_0 + \frac{Q/\ell}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \ln\left(\frac{R_a}{R_i}\right) = \frac{Q/\ell}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \ln\left(\frac{R_a}{R_i}\right)$$

# Kapazität eines Zylinderkondensators:

$$C = \frac{|Q|}{|U|} = \frac{Q}{\frac{Q}{2\pi \cdot \epsilon_0 \cdot \epsilon}} \cdot \ln\left(\frac{R_a}{R_i}\right) = 2\pi \cdot \epsilon_0 \cdot \epsilon_r \cdot \ell \cdot \frac{1}{\ln\left(\frac{R_a}{R_i}\right)} \qquad \qquad \varphi(r) = \varphi_0 - \frac{U}{\ln\left(\frac{R_a}{R}\right)} \cdot \ln\left(\frac{r}{R_i}\right)$$

Potential im Feldraum zwischen den beiden Elektroden

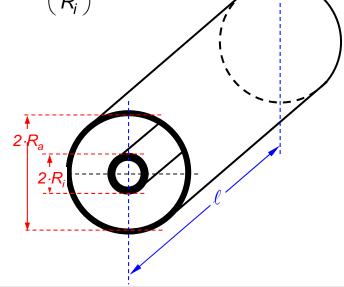
$$\varphi(r) = \varphi_0 - \frac{U}{\ln\left(\frac{R_a}{R_i}\right)} \cdot \ln\left(\frac{r}{R_i}\right)$$

Feldstärke E(r) in einem Zylinderkondensator

$$E(r) = \frac{\frac{Q}{\ell}}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{1}{r} = \frac{U}{\ln\left(\frac{R_a}{R_i}\right)} \cdot \frac{1}{r}$$

Maximale Feldstärke  $E_{max}$  an der inneren Elektrode

$$E_{\text{max}} = E(r = R_i) = \frac{U}{\ln\left(\frac{R_a}{R_i}\right)} \cdot \frac{1}{R_i}$$



#### Radialfeldkabel

Feldstärke E(r) und Äquipotentiallinien im Bereich des Isoliersystems

Innere Leitschicht: Spannung *U* 

Äußere Leitschicht: Erdpotential

N Äquipotentiallinien (inkl. ω = 0 und φ = U)  $ΔU = \frac{U}{N-1}$ 

$$\Delta U = \frac{U}{N-1}$$

$$\varphi(r_k) = \varphi_0 - \frac{U}{\ln\left(\frac{R_a}{R_i}\right)} \cdot \ln\left(\frac{r_k}{R_i}\right) = \varphi_0 - k \cdot \frac{U}{N-1} \quad \text{mit} \quad k = 0, 1, ..., N-1$$

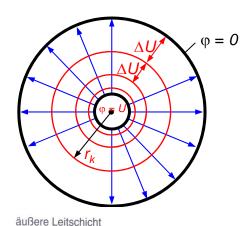
und 
$$\varphi(r = R_i) = \varphi_0 = U$$

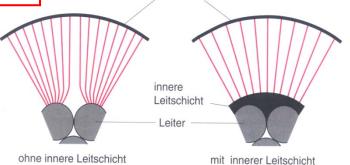
$$r_k = R_i \cdot e^{\frac{k}{N-1} \cdot \ln\left(\frac{R_a}{R_i}\right)}$$
 und  $\varphi(r_k) = U \cdot \left(1 - \frac{k}{N-1}\right)$  mit  $k = 0, 1, ..., N-1$ 

#### Funktion der Leitschichten:

Verringerung der elektrischen Feldstärke an den Einzel-drähten des Innenleiters und am äußeren Drahtschirm







# Hochspannungsdurchführungen

#### Aufgabe der Durchführung:

Einbringendes Hochspannungspotentials in das Innere eines geerdeten Gehäuses

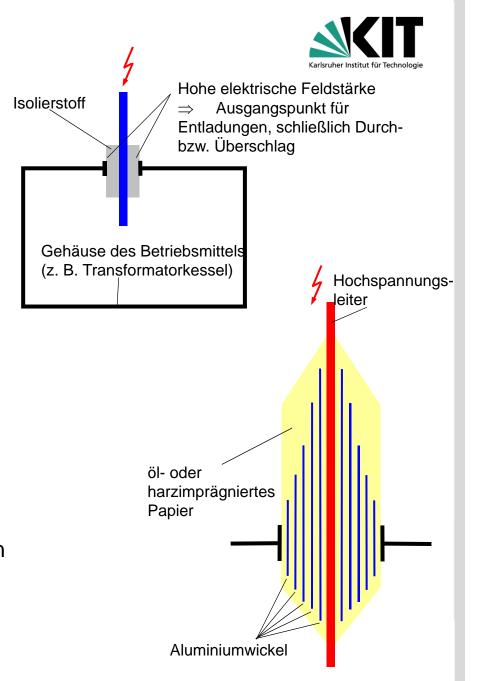
#### Einfache Konstruktion:

hohe Feldstärken an den Rändern des Kessels,dadurch Entladungen, d. h. Zerstörung des Isolierstoffs schließlich Durch- oder Überschlag der Isolierung

#### Deshalb:

gezielte Steuerung des Potentials durch Aluminiumfolien bei definierten Radien und mit definierten Längen

⇒ Aluminiumwickel sind Äquipotentialflächen



# Kapazitive Absteuerung bei Kondensatordurchführungen



Kapazität  $C_k$  zwischen den Aluminiumwickeln k und k+1

$$C_{k} = 2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r} \cdot \frac{\ell_{k+1}}{\ln\left(\frac{r_{k+1}}{r_{k}}\right)}$$

mit 
$$k = 0, 1, ..., N-1$$

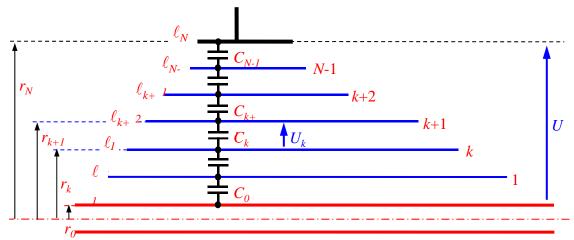
Gesamte Kapazität C der Anordnung (Reihenschaltung aller  $C_{\iota}$ )

$$C = \frac{1}{\sum_{k=0}^{N-1} \frac{1}{C_k}} = \frac{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r}{\sum_{k=0}^{N-1} \left[ \frac{1}{\ell_{k+1}} \cdot \ln\left(\frac{r_{k+1}}{r_k}\right) \right]} \longrightarrow$$

elektrische Feldstärke zwischen den Aluminiumwickeln k und k+1

$$E_{k}(r) = \frac{U_{k}}{\ln\left(\frac{r_{k+1}}{r_{k}}\right)} \cdot \frac{1}{r} = \frac{U}{\ell_{k+1} \cdot \sum_{j=0}^{N-1} \left[\frac{1}{\ell_{j+1}} \cdot \ln\left(\frac{r_{j+1}}{r_{j}}\right)\right]} \cdot \frac{1}{r} \quad \text{mit} \quad k = 0, 1, \dots, N-1$$

$$E_{k, \text{max}} = E_{k}(r = r_{k}) = \frac{U}{\sum_{j=0}^{N-1} \left[\frac{1}{\ell_{j+1}} \cdot \ln\left(\frac{r_{j+1}}{r_{j}}\right)\right]} \cdot \frac{1}{r_{k} \cdot \ell_{k+1}}$$



Kondensatorkette: durch alle Kondensatoren fließt derselbe Strom:  $I = \omega \cdot C_k \cdot U_k = \omega \cdot C \cdot U$ 

(Reinenschaltung aller 
$$C_k$$
)
$$C = \frac{1}{\sum_{k=0}^{N-1} \frac{1}{C_k}} = \frac{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r}{\sum_{k=0}^{N-1} \left[\frac{1}{\ell_{k+1}} \cdot \ln\left(\frac{r_{k+1}}{r_k}\right)\right]} \longrightarrow U_k = \frac{1}{C_k} \cdot C \cdot U = \frac{\ln\left(\frac{r_{k+1}}{r_k}\right)}{\sum_{j=0}^{N-1} \left[\frac{1}{\ell_{j+1}} \cdot \ln\left(\frac{r_{j+1}}{r_j}\right)\right]} \cdot U \quad \text{mit} \quad k = 0,1,...,N-1$$
elektrische Feldstärke zwischen den

Maximal-Feldstärke zwischen den Wickeln k und k+1 direkt am Wickel k

$$E_{k,\max} = E_k(r = r_k) = \frac{U}{\sum_{j=0}^{N-1} \left[ \frac{1}{\ell_{j+1}} \cdot \ln\left(\frac{r_{j+1}}{r_j}\right) \right]} \cdot \frac{1}{r_k \cdot \ell_{k+1}}$$

# Dimensionierung von Kondensatordurchführungen (I)



#### Forderung:

konstante Maximalfeldstärke  $E_{max}$  in radialer Richtung für alle Aluminiumwickel

$$E_{\text{max}} = \frac{U}{\sum_{j=0}^{N-1} \left[ \frac{1}{\ell_{j+1}} \cdot \ln \left( \frac{r_{j+1}}{r_j} \right) \right]} \cdot \frac{1}{r_k \cdot \ell_{k+1}}$$
$$= U \cdot \frac{C}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{1}{r_k \cdot \ell_{k+1}}$$

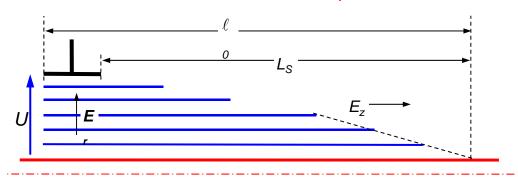
oder

$$\frac{1}{r_k \cdot \ell_{k+1}} = const. \quad \text{und damit}$$

$$r_k \cdot \ell_{k+1} = const.$$
 mit  $k = 0,1,...,N-1$ 

<u>Problem:</u> nichtlineare Spannungsverteilung entlang der Oberfläche des Papierwickels, elektrische Festigkeit ist aber an Oberflächen meist geringer

<u>Deshalb:</u> Oft strebt man eine lineare Spannungsverteilung an der Oberfläche des Papierwickels an



$$\Delta U = \frac{1}{\Delta C} \cdot C \cdot U = \frac{C \cdot U}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{\ln\left(\frac{r + \Delta r}{r}\right)}{\ell} = \frac{C \cdot U}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{\ln\left(1 + \frac{\Delta r}{r}\right)}{\ell}$$

$$C_{k} = 2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r} \cdot \frac{\ell_{k}}{\ln\left(\frac{r_{k+1}}{r_{k}}\right)} \qquad \qquad \lim \left(1 + \frac{\Delta r}{r}\right) \approx \frac{\Delta r}{r} \qquad \frac{C \cdot U}{2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r}} \cdot \frac{\Delta r}{\ell \cdot r}$$

Grenzübergang  $\Delta U \rightarrow dU$ ,  $\Delta r \rightarrow dr$  und  $\Delta \ell \rightarrow d\ell$ ,

$$dU = \frac{1}{dC} \cdot C \cdot U \approx \frac{C \cdot U}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{dr}{\ell \cdot r}$$

# Dimensionierung von Kondensatordurchführungen (II)



$$dU = \frac{1}{dC} \cdot C \cdot U \approx \frac{C \cdot U}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{dr}{\ell \cdot r}$$

$$E_r = \frac{dU}{dr} = \frac{C \cdot U}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{dr}{\ell \cdot r} \cdot \frac{1}{dr} = \frac{C \cdot U}{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \frac{1}{\ell \cdot r}$$

$$E_{z} = -\frac{dU}{d\ell} = -\frac{C \cdot U}{2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r}} \cdot \frac{dr}{\ell \cdot r} \cdot \frac{1}{d\ell}$$
$$= -\frac{C \cdot U}{2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r}} \cdot \frac{1}{\ell \cdot r} \cdot \frac{dr}{d\ell}$$

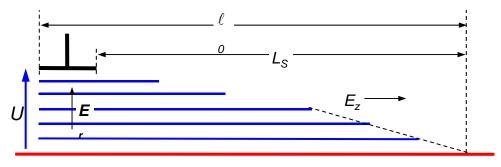
Die Forderung  $E_z = const. = \frac{U}{L_z}$ 

führt über Trennung der Variablen

$$-\frac{C \cdot L_{S}}{2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r}} \cdot \frac{dr}{r} = \ell \cdot d\ell$$

und Integration von (äußerer Erdbelag:  $\ell_N$ ,  $r_N$ )

$$-\frac{C \cdot L_{S}}{2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r}} \cdot \int_{r_{N}}^{r} \frac{dr}{r} = \int_{\ell_{N}}^{\ell} \ell \cdot d\ell$$



auf die Lösung

$$\frac{C \cdot L_{S}}{2\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r}} \cdot \ln \left(\frac{r_{N}}{r}\right) = \frac{1}{2} \left(\ell^{2} - \ell_{N}^{2}\right)$$

Gesamte Kapazität C der Anordnung: Integration bis  $C = \frac{\pi \cdot \varepsilon_0 \cdot \varepsilon_r}{L_S \cdot \ln \left(\frac{r_N}{r_s}\right)} \cdot \left(\ell_0^2 - \ell_N^2\right)$  zum Radius  $r_0$  und zur Länge  $\ell_0$ 

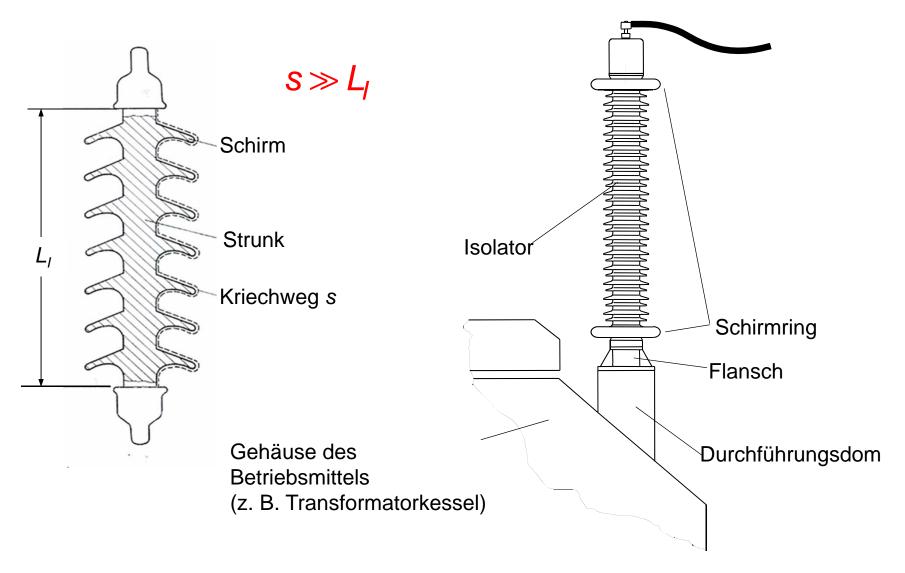
$$C = \frac{\pi \cdot \varepsilon_0 \cdot \varepsilon_r}{L_S \cdot \ln\left(\frac{r_N}{r_0}\right)} \cdot \left(\ell_0^2 - \ell_N^2\right)$$

Längen  $\ell$  der Wickel abhängig von deren Radien r

$$\ell = \sqrt{\ell_N^2 + \left(\ell_0^2 - \ell_N^2\right) \cdot \frac{\ln\left(\frac{r_N}{r}\right)}{\ln\left(\frac{r_N}{r_0}\right)}}$$

# Äußerer Isolator von Durchführungen





#### Beanspruchung von Isolationssystemen mit Mischdielektrika



# Bedingungen für D (dielektrische Verschiebung) und E (elektrische Feldstärke) an Grenzflächen

$$E_{t2} = E_{t1}$$

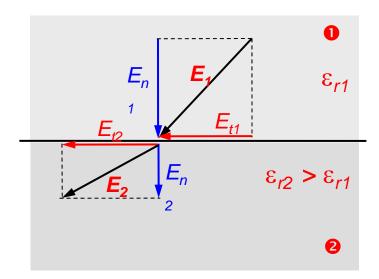
$$D_{n2} = D_{n1} + \sigma$$

Tangentialkomponente der elektrischen Feldstärke ist stetig

Normalkomponente der dielektrischen Verschiebung ist stetig, falls keine freien Ladungen vorliegen, ansonsten springt sie um die Flächenladung  $\sigma$ 

ohne freie Ladungen

$$E_{n2} = \frac{\varepsilon_{r1}}{\varepsilon_{r2}} \cdot E_{n1} + \frac{\sigma}{\varepsilon_{r2}} = \frac{\varepsilon_{r1}}{\varepsilon_{r2}} \cdot E_{n1}$$



# Quer geschichtete Dielektrika bei Gleich- und Wechselspannung



#### Bei Wechselspannung:

#### Spannungsaufteilung wird durch die Dielektrizitätszahlen bestimmt

Aus der Anordnung und der Grenzbedingung:

$$U=U_1+U_2$$

$$E_{n1} = \frac{U_1}{a}$$

$$E_{n2} = \frac{U_2}{b}$$

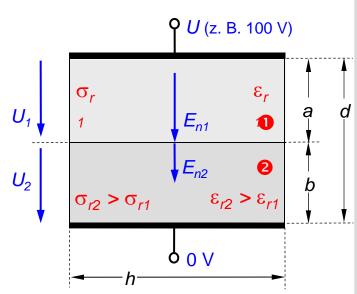
$$U = U_1 + U_2$$
  $E_{n1} = \frac{U_1}{a}$   $E_{n2} = \frac{U_2}{b}$   $E_{n2} = \frac{\varepsilon_{r1}}{\varepsilon_{r2}} \cdot E_{n1}$ 

Daraus: 
$$E_{n1} = \frac{\varepsilon_{r2}}{\varepsilon_{r2} \cdot a + \varepsilon_{r1} \cdot b} \cdot U$$
  $E_{n2} = \frac{\varepsilon_{r1}}{\varepsilon_{r2} \cdot a + \varepsilon_{r1} \cdot b} \cdot U$ 

$$E_{n2} = \frac{\varepsilon_{r1}}{\varepsilon_{r2} \cdot a + \varepsilon_{r1} \cdot b} \cdot U$$

$$U_1 = \frac{\varepsilon_{r2} \cdot a}{\varepsilon_{r2} \cdot a + \varepsilon_{r1} \cdot b} \cdot U$$

$$U_1 = \frac{\varepsilon_{r2} \cdot a}{\varepsilon_{r2} \cdot a + \varepsilon_{r1} \cdot b} \cdot U \qquad U_2 = \frac{\varepsilon_{r1} \cdot b}{\varepsilon_{r2} \cdot a + \varepsilon_{r1} \cdot b} \cdot U$$



Feldstärken in den beiden Dielektrika in umgekehrtem Verhältnis zu den Dielektrizitätszahlen  $\varepsilon_{r1}$  und  $\varepsilon_{r2}$ 

beim Verhältnis der Spannungen spielt zusätzlich die Geometrie (Abstände) eine Rolle

$$\frac{E_{m1}}{E_{n2}} = \frac{\varepsilon_{r2}}{\varepsilon_{r1}} \qquad \frac{U_1}{U_2} = \frac{\varepsilon_{r2}}{\varepsilon_{r1}} \cdot \frac{a}{b}$$

Die elektrische Feldstärke in einem Mischdielektrikum ist bei Beanspruchung mit Wechselspannung in dem Dielektrikum mit der <u>niedrigeren Dielektrizitätszahl</u> am höchsten.

# Quer geschichtete Dielektrika bei Gleich- und Wechselspannung



#### Bei Gleichspannung:

Spannungsaufteilung wird durch die Leitfähigkeiten (spez. Widerstände) bestimmt

Aus der Anordnung:  $U = U_1 + U_2$   $J_1 = \sigma_1 \cdot E_{n1}$   $J_2 = \sigma_2 \cdot E_{n2}$   $J = J_1 = J_2$   $\frac{E_{n1}}{F_{n2}} = \frac{\sigma_2}{\sigma_1}$ Grenzbedingung:

$$J_1 = \sigma_1 \cdot E_{m1}$$

$$J_2 = \sigma_2 \cdot E_{n2}$$

$$J=J_1=J_2$$

$$\frac{E_{m1}}{E_{m2}} = \frac{\sigma_2}{\sigma_1}$$

$$E_{m1} = \frac{\sigma_2}{\sigma_2 \cdot a + \sigma_1 \cdot b} \cdot U$$

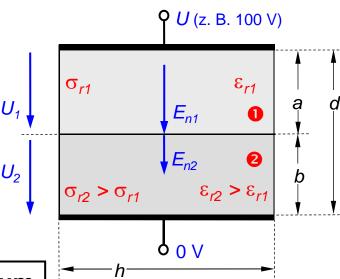
Daraus: 
$$E_{n1} = \frac{\sigma_2}{\sigma_2 \cdot a + \sigma_1 \cdot b} \cdot U$$
  $E_{n2} = \frac{\sigma_1}{\sigma_2 \cdot a + \sigma_1 \cdot b} \cdot U$ 

$$U_1 = \frac{\sigma_2 \cdot a}{\sigma_2 \cdot a + \sigma_1 \cdot b} \cdot U$$

$$U_1 = \frac{\sigma_2 \cdot a}{\sigma_2 \cdot a + \sigma_1 \cdot b} \cdot U \qquad U_2 = \frac{\sigma_1 \cdot b}{\sigma_2 \cdot a + \sigma_1 \cdot b} \cdot U$$

**Damit** 

$$\frac{E_{m1}}{E_{n2}} = \frac{\sigma_2}{\sigma_1} \qquad \frac{U_1}{U_2} = \frac{\sigma_2}{\sigma_1} \cdot \frac{a}{b}$$



Die elektrische Feldstärke in einem Mischdielektrikum ist bei Beanspruchung mit Gleichspannung in dem Dielektrikum mit der <u>niedrigeren Leitfähigkeit</u> (= höchster spezifischer Widerstand) am höchsten

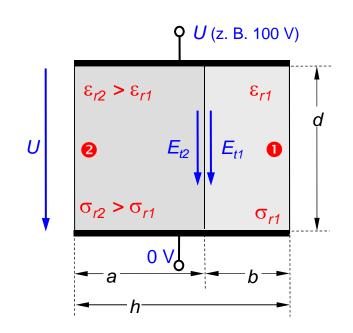
# Längs geschichtete Dielektrika bei Gleich- und Wechselspannung

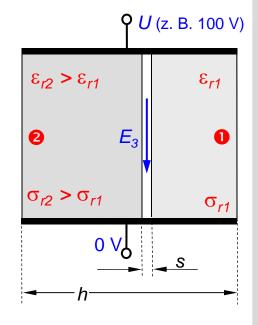


## Keine unterschiedliche Spannungsverteilung wegen

$$E_{t1} = E_{t2} = E = \frac{U}{d}$$

Identische Feldstärke in jedem Dielektrikum





#### **Praxis:**

Besonders kritisch ist die Kombination von 2 Feststoffdielektrika

Grund: sehr leicht kann sich ein Spalt bilden, dieser füllt sich entweder mit einer Isolierflüssigkeit oder mit einem Gas (z. B. Luft)

Probleme: • elektrische Festigkeit von Flüssigkeiten und Gasen ist oft niedriger als die des

**Feststoffs** 

- An Grenzflächen sammeln sich oft Schmutzpartikel
  - ⇒ Reduktion der elektrischen Festigkeit

# **Elektrische Festigkeit**



#### Grundaufgabe der Hochspannungstechnik

elektrische Beanspruchung eines Isoliersystems geringer halten, als seine elektrische Festigkeit

#### Elektrischer Durchschlag ist ein statistisches Phänomen

- ⇒ Durchschlagspannung variiert von Versuch zu Versuch
- ⇒ Durchschlagspannung (Zeit bis zum Durchschlag bei fester Spannung) wird als Zufallsgröße betrachtet

#### <u>Spannungssteigerungsversuch</u>

Spannung an der Isolieranordnung (z. B. Wechselspannung) wird langsam so lange gesteigert, bis ein Durchschlag auftritt

- ⇒ theoretisch unendlich hohe Anzahl von Versuchen notwendig, daraus kann bestimmt werden
- Spannung, bis zu der sicher kein Durchschlag auftritt (Durchschlag-Wahrscheinlichkeit 0%)
- Spannung, über der mit Sicherheit ein Durchschlag auftritt (DWK 100%)

unendlich viele Versuche nicht möglich ⇒ statistische Verfahren

# Statistische Untersuchung der Spannungsfestigkeit

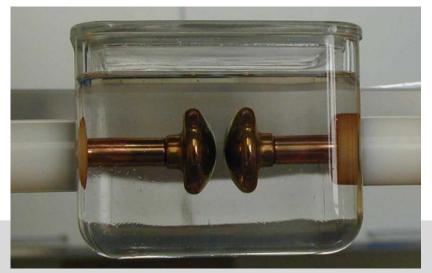


Aus der Gesamtheit aller (fiktiv) durchgeführten Durchschlagversuche wird eine Stichprobe mit dem Umfang *N* herausgenommen

statistische Unabhängigkeit aufeinander folgender Versuche muss sichergestellt sein

#### Beispiel: Öldurchschlag

zwischen den Elektroden bilden sich beim Durchschlag leitfähige Schlieren, vor dem nächsten Versuch müssen sie entfernt werden



#### **Stichprobe**

aus einer Anzahl von *N* Durchschlagversuchen Prüfung der statistischen Unabhängigkeit

#### **Empirische Verteilungsfunktion**

Ordnung der Stichprobe und Bestimmung der absoluten und relativen Summenhäufigkeit

#### Theoretische Verteilungsfunktion

Auswahl einer geeigneten theoretischen Verteilungsfunktion Bestimmung der Parameter dieser Funktion (Parameterschätzung)

#### **Vertrauensintervall (Konfidenzintervall)**

Vorgabe eines Vertrauensbereichs (z. B. 90 %) Angabe einer geschätzten Stehspannung, z. B. als 1-%-Durchschlagspannung mit 90% Vertrauensintervall

# Beispiel: Stichprobe und empirische Verteilungsfunktion



**Stichprobe:** aus eine Anzahl von N Durchschlagversuchen

Ergebnisse der Durchschlagversuche:

 $U_D/kV = 102$ ; 100; 107; 98; 95; 100; 104; 99; 92; 102; 103; 99; 97; 95; 101; 104; 98; 94; 100.

#### **Empirische Verteilungsfunktion**

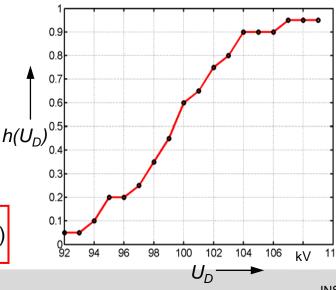
Ordnung der Stichprobe und Bestimmung der absoluten und relativen Summenhäufigkeit

absolute Summenhäufigkeit  $H(U_D \le U_{Di})$  beschreibt, wie oft eine Durchschlagspannung  $U_D$  kleiner oder gleich einem bestimmten Wert  $U_{Di}$  gemessen wurde

# Empirische Verteilungsfunktion:

 $H(U_D \le U_{Di})$  bezogen auf N+1, N= Anzahl der Durchschlagversuche

$$h(x) = h(U_D) = \frac{1}{N+1} \cdot H(U_D \le U_{Di})$$



| Spannun | absolute   | Summenhäufigkeit |         |  |
|---------|------------|------------------|---------|--|
| g in kV | Häufigkeit | absolut          | relativ |  |
| 92      | 1          | 1                | 0,05    |  |
| 93      | 0          | 1                | 0,05    |  |
| 94      | 1          | 2                | 0,1     |  |
| 95      | 2          | 4                | 0,2     |  |
| 96      | 0          | 4                | 0,2     |  |
| 97      | 1          | 5                | 0,25    |  |
| 98      | 2          | 7                | 0,35    |  |
| 99      | 2          | 9                | 0,45    |  |
| 100     | 3          | 12               | 0,6     |  |
| 101     | 1          | 13               | 0,65    |  |
| 102     | 2          | 15               | 0,75    |  |
| 103     | 1          | 16               | 0,8     |  |
| 104     | 2          | 18               | 0,9     |  |
| 105     | 0          | 18               | 0,9     |  |
| 106     | 0          | 18               | 0,9     |  |
| 107     | 1          | 19               | 0,95    |  |
| 108     | 0          | 19               | 0,95    |  |
| 109     | 0          | 19               | 0,95    |  |

 $h(x) = h(U_D)$ 

# Theoretische Verteilungsfunktionen und Parameter



#### Theoretische Verteilungsfunktion

Auswahl einer geeigneten theoretischen Verteilungsfunktion, Bestimmung der Parameter dieser Funktion (Parameterschätzung)

#### Mittelwert oder Erwartungswert

empirischer Schätzwert für den Erwartungswert μ: ist der arithmetische Mittelwert  $x_m$  der N Einzelmessungen  $x_k$ 

$$\mu \approx X_m = \frac{1}{N} \cdot \sum_{k=1}^{N} X_k$$

empirische Varianz und empirische Standardabweichung Schätzung für die Varianz  $\sigma^2$ : empirische Varianz  $s_m^2$ beschreibt als mittlere quadratische Abweichung die Abweichung

Schätzung für die Varianz 
$$\sigma^2$$
: empirische Varianz  $s_m^2$  beschreibt als mittlere quadratische Abweichung die Abweichung aller Einzelwerte  $x_k$  der Zufallsgröße  $X$  von ihrem Erwartungswert  $\mu = E(X) \approx x_m$ 

$$\sigma^2 \approx s_m^2 = \frac{1}{N-1} \cdot \sum_{k=1}^{N} (x_k - x_m)^2$$

$$\sigma \approx s = \sqrt{s_m^2} = \sqrt{\frac{1}{N-1} \cdot \sum_{k=1}^{N} (x_k - x_m)^2}$$

s: empirische Standardabweichung

2 wichtige Verteilungsfunktionen:

- die Gauß'sche Normalverteilung und
- die Weibull-Verteilung.

# **Beispiel: Gauß'sche Normalverteilung**



Verteilungsfunktion F(x) ist das Integral der Dichtefunktion f(x), F(x) ist nicht geschlossen lösbar

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{und} \quad F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{\frac{(x-\mu)^2}{2\sigma^2}} dx$$

| Х    | μ-4,0·σ | μ-3,5⋅σ | μ-3,0⋅σ | μ-2,5·σ | μ-2,0·σ | μ-1,5⋅σ | μ-1,0·σ | μ-0,5·σ |
|------|---------|---------|---------|---------|---------|---------|---------|---------|
| F(x) | 0,00003 | 0,00023 | 0,00135 | 0,00621 | 0,0228  | 0,0668  | 0,1587  | 0,3085  |

$$x = \mu$$
:  $F(x) = 0.5$   $x = \mu + 0.33 \cdot \sigma$ :  $F(x) = 0.6293 \approx 0.63$   $x = \mu - 2.326 \cdot \sigma$ :  $F(x) = 0.01$ 

| Х    | μ+4,0⋅σ | μ+3,5⋅σ | μ+3,0⋅σ | μ+2,5⋅σ | μ+2,0⋅σ | μ+1,5⋅σ | μ+1,0⋅σ | μ+0,5⋅σ |
|------|---------|---------|---------|---------|---------|---------|---------|---------|
| F(x) | 0,99997 | 0,99977 | 0,99865 | 0,99379 | 0,9772  | 0,9332  | 0,8413  | 0,6915  |

#### Eigenschaft der Gauß'schen Normalverteilung:

symmetrisch bezüglich des Mittelwertes und unendlich ausgedehnt

#### demgegenüber:

unterhalb einer bestimmten Spannung erfolgt kein Durchschlag mehr, nach oben sichere Durchschlagspannung

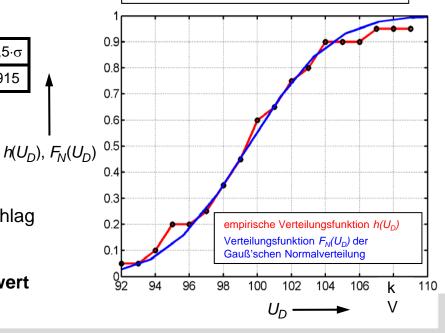
$$F(\mu-3,0\cdot\sigma) = 0,135 \%$$

 $U_{D0}$  = 88 kV: Orientierungswert für die Stehspannung  $U_{D0}$ 

## Beispiel:

$$x_{m} = \frac{1}{N} \cdot \sum_{k=1}^{N} x_{k} = 99,47 \,\text{kV} \approx \mu$$

$$s = \sqrt{\frac{1}{N-1} \cdot \sum_{k=1}^{N} (x_{k} - x_{m})^{2}} = 3,82 \,\text{kV} \approx \sigma$$



# **Beispiel: Weilbull-Verteilung (I)**



#### Weilbull-Verteilung ist eine nach unten beschränkte Extremwertverteilung

- ⇒ eignet sich besonders für Durchschlagvorgänge für die eine untere Stehspannung angenommen werden kann
- $\Rightarrow$  F(x) enthält die 3 Parameter  $x_{63}$ ,  $x_0$  und  $\delta$ , berechnet werden müssen
  - entweder aus empirischer Verteilungsfunktion
  - oder aus Gauß'scher Normalverteilung

$$x_{63} = \mu + 0.33 \cdot \sigma \approx x_m + 0.33 \cdot s = x_m + 0.33 \cdot \sqrt{s_m^2}$$
$$x_0 = \mu - 3 \cdot \sigma \approx x_m - 3 \cdot s = x_m - 3 \cdot \sqrt{s_m^2}$$

35

$$F(x) = \begin{cases} 1 - e^{-\left(\frac{x - x_0}{x_{63} - x_0}\right)^{\delta}} & \text{für } x \ge x_0 \\ 0 & \text{für } x < x_0 \end{cases}$$

#### Beispiel:

 $U_{D63} = 100,73 \text{ kV und } U_{D0} = 88 \text{ kV}$ 

Bestimmung des Exponenten  $\delta$ : empirische Verteilungsfunktion h(x) wird als Annäherung für F(x) verwendet

$$h(x) \approx F(x) = 1 - e^{-\left(\frac{x - x_0}{x_{63} - x_0}\right)^{\delta}} \qquad \begin{cases} \frac{\left(\frac{x - x_0}{x_{63} - x_0}\right)^{\delta} = -\ln[1 - h(x)]}{\left(\frac{x - x_0}{x_{63} - x_0}\right)} = -\ln[1 - h(x)] \end{cases} \qquad \delta = \frac{H(Z)}{Z} = \frac{\lg\left\{-\ln[1 - h(U_D)]\right\}}{\lg\left(\frac{U_D - U_{D0}}{U_{D63} - U_{D0}}\right)}$$

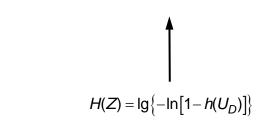
$$\delta = \frac{H(Z)}{Z} = \frac{\lg\{-\ln[1 - h(U_D)]\}}{\lg\left(\frac{U_D - U_{D0}}{U_{D63} - U_{D0}}\right)}$$

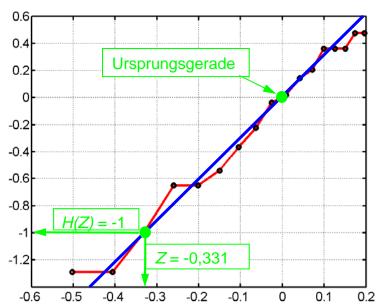
# **Beispiel: Weilbull-Verteilung (II)**

## Beispiel:

$$U_{D63}$$
 = 100,73 kV und  $U_{D0}$  = 88 kV

$$\delta = \frac{H(Z)}{Z} = \frac{\lg\{-\ln[1 - h(U_D)]\}}{\lg\left(\frac{U_D - U_{D0}}{U_{D63} - U_{D0}}\right)}$$





$$Z = \lg \left( \frac{U_D - U_{D0}}{U_{D63} - U_{D0}} \right) \longrightarrow$$



 $\delta = \frac{H(Z)}{Z}$  ist eine Ursprungsgerade

⇒ ein weiterer Punkt genügt

z. B.: 
$$\delta = \frac{H(Z)}{Z} = \frac{-1}{-0.331} = 3.02$$

(jeder andere Punkt wäre möglich)

#### Konfidenzintervalle



theoretische Verteilungsfunktion F(x) ist nur eine Annäherung an die unbekannte Verteilungsfunktion

⇒ Definition von Vertrauensbereichen (Konfidenzintervalle), in denen die Verteilungsfunktion mit einer vorgebbaren Wahrscheinlichkeit (z. B. 90 %) liegt

X (die Durchschlagspannung) ist eine normalverteilte Zufallsvariable mit unbekanntem Mittelwert  $\mu$  und unbekannter Varianz  $\sigma^2$ 

Zur Berechnung der Vertrauensintervalle sind die Zufallsgrößen T und Z maßgebend

$$T = \frac{X^* - \mu}{S/\sqrt{N}}$$

$$T = \frac{X^* - \mu}{S/\sqrt{N}}$$
 
$$Z = (N-1) \cdot \frac{S^2}{\sigma^2}$$

X\*: Schätzfunktion für den unbekannten Mittelwert μ

S: ist die Schätzfunktion für die unbekannte Varianz  $\sigma^2$  der Zufallsvariablen X

T: verteilt gemäß der t-Verteilung nach Student

Z: verteilt gemäß der Chi-Quadrat-Verteilung, jeweils mit f = N-1 Freiheitsgraden

## Konfidenzintervall für den unbekannten Mittelwert µ



- 1. Wahl eines Vertrauensniveaus  $\gamma$ , z. B.  $\gamma = 0.9$ ,  $\gamma = 0.95$  oder  $\gamma = 0.99$
- 2. Berechnung der Konstanten c aus der Bedingung

$$P(-c \le T \le c) = \gamma$$

aus der t-Verteilung nach Student entnimmt man dazu den Wert

$$c = t(\frac{1+\gamma}{2}, N-1)$$

3. Das Vertrauensintervall für den unbekannten Mittelwert  $\mu$  lautet dann

$$X_m - C \cdot \frac{S}{\sqrt{N}} \le \mu \le X_m + C \cdot \frac{S}{\sqrt{N}}$$
  $X_m = \frac{1}{N} \cdot \sum_{k=1}^{N} X_k$   $S = \sqrt{S_m^2} = \sqrt{\frac{1}{N-1} \cdot \sum_{k=1}^{N} (x_k - x_m)^2}$ 

#### **Beispiel:**

Stichprobenumfang von N = 19 und ein 90-%-Vertrauensintervall

$$c = t(0,95;18) = 1,734$$

$$99,47kV - 1,52kV = 97,95kV \le \mu \le 100,99kV = 99,47kV + 1,52kV$$

| f   | 0,90       | 0,95       | p<br>0,975 | 0,99   | 0,995      |
|-----|------------|------------|------------|--------|------------|
| 1   | 3,078      | 6,314      | 12,707     | 31,820 | 63,654     |
| 2   | 1,886      | 2,920      | 4,303      | 6,965  | 9,925      |
| 3   | 1,638      | 2,353      | 3,182      | 4,541  | 5,841      |
| 4   | 1,533      | 2,132      | 2,776      | 3,747  | 4,604      |
| 5   | 1,476      | 2,015      | 2,571      | 3,365  | 4,032      |
| 6   | 1,440      | 1,943      | 2,447      | 3,143  | 3,707      |
| 7   | 1,415      | 1,895      | 2,365      | 2,998  | 3,499      |
| 8   | 1,397      | 1,860      | 2,306      | 2,896  | 3,355      |
| 9   | 1,383      | 1,833      | 2,262      | 2,821  | 3,250      |
| 10  | 1,372      | 1,812      | 2,228      | 2,764  | 3,169      |
| 11  | 1,363      | 1,796      | 2,201      | 2,718  | 3,106      |
| 12  | 1,356      | 1,782      | 2,179      | 2,681  | 3,055      |
| 13  | 1,350      | 1,771      | 2,160      | 2,650  | 3,012      |
| 14  | 1,345      | 1,761      | 2,145      | 2,624  | 2,977      |
| 15  | 1,341      | 1,753      | 2,131      | 2,602  | 2,947      |
| 16  | 1,337      | 1 746      | 2,120      | 2,583  | 2,921      |
| 17  | 1,333      | 1,740      | 2,110      | 2,567  | 2,898      |
| 18  | 1,330      | 1,734      | 2,101      | 2,552  | 2,878      |
| 19  | 1,328      | 1,729      | 2,093      | 2,539  | 2,861      |
| 20  | 1,325      | 1,725      | 2,086      | 2,528  | 2,845      |
| 22  | 1,321      | 1,717      | 2,074      | 2,508  | 2,819      |
| 24  | 1,318      | 1,711      | 2,064      | 2,492  | 2,797      |
| 26  | 1,315      | 1,706      | 2,056      | 2,479  | 2,779      |
| 28  | 1,313      | 1,701      | 2,048      | 2,467  | 2,763      |
| 30  | 1,310      | 1,697      | 2,042      | 2,457  | 2,750      |
| 40  | 1,303      | 1,684      | 2,021      | 2,423  | 2,704      |
| 50  | 1,299      | 1,676      | 2,009      | 2,403  | 2,678      |
| 60  | 1,296      | 1,671      | 2,000      | 2,390  | 2,660      |
| 100 | 1,290      | 1,660      | 1,984      | 2,364  | 2,626      |
| 200 | 1,286      | 1,653      | 1,972      | 2,345  | 2,601      |
| 500 | 1,283      | 1,648      | 1,965      | 2,334  | 2,586      |
| 8   | :<br>1,282 | :<br>1,645 | :<br>1,960 | 2,326  | :<br>2,576 |
| w   | 1,202      | 1,043      | 1,900      | 2,320  | 2,370      |

#### Konfidenzintervall für die unbekannte Varianz $\sigma^2$



- 1. Wahl eines Vertrauensniveaus  $\gamma$ , z. B.  $\gamma = 0.9$ ,  $\gamma = 0.95$  oder  $\gamma = 0.99$
- 2. Berechnung der Konstanten  $c_1$  und  $c_2$  aus der Bedingung

$$P(-c_1 \le Z \le c_2) = \gamma$$

aus der Chi-Quadrat-Verteilung entnimmt man die Werte

$$c_1 = z(\frac{1-\gamma}{2}, N-1)$$
  $c_2 = z(\frac{1+\gamma}{2}, N-1)$ 

3. Das Vertrauensintervall für die unbekannte Varianz  $\sigma^2$  lautet dann

$$(N-1)\cdot\frac{s_m^2}{c_2} \leq \sigma^2 \leq (N-1)\cdot\frac{s_m^2}{c_1}$$

$$s_m = \sqrt{\frac{1}{N-1} \cdot \sum_{k=1}^{N} (x_k - x_m)^2}$$

$$x_m = \frac{1}{N} \cdot \sum_{k=1}^{N} x_k$$

#### **Beispiel:**

Stichprobenumfang von N = 19 und ein 90-%-Vertrauensintervall

$$c_1 = \chi^2(0,05;18) = 9,39$$

$$c_2 = \chi^2(0.95;18) = 28.87$$

$$c_2 = \chi^2(0.95;18) = 28.87$$
  $9.1kV \le \sigma^2 \le 27.97kV$ 

|     |       |       |       |       |       | p     |       |       |       |       |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| f   | 0,005 | 0,01  | 0,025 | 0,05  | 0,10  | 0,90  | 0,95  | 0,975 | 0,99  | 0,995 |
| 1   | 0,000 | 0.000 | 0,001 | 0,004 | 0,016 | 2,71  | 3,84  | 5,02  | 6,63  | 7,88  |
| 2   | 0,01  | 0,020 | 0,051 | 0,103 | 0,211 | 4,61  | 5,99  | 7,38  | 9,21  | 10,60 |
| 3   | 0,07  | 0,115 | 0,216 | 0,352 | 0,584 | 6,25  | 7,81  | 9,35  | 11,35 | 12,84 |
| 4   | 0,21  | 0,297 | 0,484 | 0,711 | 1,064 | 7,78  | 9,49  | 11,14 | 13,28 | 14,86 |
| 5   | 0,41  | 0,554 | 0,831 | 1,15  | 1,16  | 9,24  | 11,07 | 12,83 | 15,09 | 16,75 |
| 6   | 0,68  | 0,872 | 1,24  | 1,64  | 2,20  | 10,64 | 12,59 | 14,45 | 16,81 | 18,55 |
| 7   | 0,99  | 1,24  | 1,69  | 2,17  | 2,83  | 12,02 | 14,06 | 16,01 | 18,48 | 20,28 |
| 8   | 1,34  | 1,65  | 2,18  | 2,73  | 3,49  | 13,36 | 15,51 | 17,53 | 20,09 | 21,96 |
| 9   | 1,73  | 2,09  | 2,70  | 3,33  | 4,17  | 14,68 | 16,92 | 19,02 | 21,67 | 23,59 |
| 10  | 2,16  | 2,56  | 3,25  | 3,94  | 4,87  | 15,99 | 18,31 | 20,48 | 23,21 | 25,19 |
| 11  | 2,60  | 3,05  | 3,82  | 4,57  | 5,58  | 17,28 | 19,67 | 21,92 | 24,73 | 26,76 |
| 12  | 3,07  | 3,57  | 4,40  | 5,23  | 6,30  | 18,55 | 21,03 | 23,34 | 26,22 | 28,30 |
| 13  | 3,57  | 4,11  | 5,01  | 5,89  | 7,04  | 19,81 | 22,36 | 24,74 | 27,69 | 29,82 |
| 14  | 4,07  | 4,66  | 5,63  | 6,57  | 7,79  | 21,06 | 23,68 | 26,12 | 29,14 | 31,32 |
| 15  | 4,60  | 5,23  | 6,26  | 7,26  | 8,55  | 22,31 | 25,00 | 27,49 | 30,58 | 32,80 |
| 16  | 5,14  | 5,81  | 6,91  | 7.96  | 9,31  | 23,54 | 26.30 | 28,85 | 32,00 | 34,27 |
| 17  | 5,70  | 6,41  | 7,56  | 8,67  | 10,09 | 24,77 | 27,59 | 30,19 | 33,41 | 35,72 |
| 18  | 6,26  | 7,01  | 8,23  | 9,39  | 10,86 | 25,99 | 28,87 | 31,53 | 34,81 | 37,16 |
| 19  | 6,84  | 7,63  | 8,91  | 10,12 | 11,65 | 27,20 | 30,14 | 32,85 | 36,19 | 38,58 |
| 20  | 7,43  | 8,26  | 9,59  | 10,85 | 12,44 | 28,41 | 31,41 | 34,17 | 37,57 | 40,00 |
| 22  | 8,6   | 9,5   | 11,0  | 12,3  | 14,0  | 30,8  | 33,9  | 36,8  | 40,3  | 42,8  |
| 24  | 9,9   | 10,9  | 12,4  | 13,8  | 15,7  | 33,2  | 36,4  | 39,4  | 43,0  | 45,6  |
| 26  | 11,2  | 12,2  | 13,8  | 15,4  | 17,3  | 35,6  | 38,9  | 41,9  | 45,6  | 48,3  |
| 28  | 12,5  | 13,6  | 15,3  | 16,9  | 18,9  | 37,9  | 41,3  | 44,5  | 48,3  | 51,0  |
| 30  | 13,8  | 15,0  | 16,8  | 18,5  | 20,6  | 40,3  | 43,8  | 47,0  | 50,9  | 53,7  |
| 40  | 20,7  | 22,2  | 24,4  | 26,5  | 29,1  | 51,8  | 55,8  | 59,3  | 63,7  | 66,8  |
| 50  | 28,0  | 29,7  | 32,4  | 34,8  | 37,7  | 63,2  | 67,5  | 71,4  | 76,2  | 79,5  |
| 60  | 35,5  | 37,5  | 40,5  | 43,2  | 46,5  | 74,4  | 79,1  | 83,3  | 88,4  | 92,0  |
| 70  | 43,3  | 45,4  | 48,8  | 51,7  | 55,3  | 85,5  | 90,5  | 95,0  | 100,4 | 104,2 |
| 80  | 51,2  | 53,5  | 57,2  | 60,4  | 64,3  | 96,6  | 101,9 | 106,6 | 112,3 | 116,3 |
| 90  | 59,2  | 61,8  | 65,6  | 69,1  | 73,3  | 107,6 | 113,1 | 118,1 | 124,1 | 128,3 |
| 100 | 67,3  | 70,1  | 74,2  | 77,9  | 82,4  | 118,5 | 124,3 | 129,6 | 135,8 | 140,2 |

## Berechnung der Konfidenzintervalle für $\mu$ und $\sigma^2$



Stehspannung: z. B. 1-%-Wert der Durchschlagspannung mit 90-%-Vertrauensintervall

#### Stehwert für die Spannung

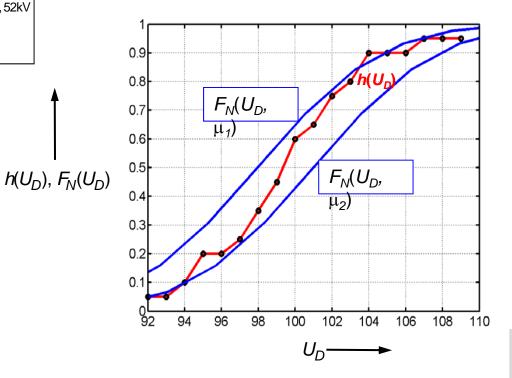
Spannungswert, für den es mit einer nur sehr geringen Wahrscheinlichkeit, z. B. 1 %, zu einem Durchschlag kommt

90-%-Vertrauensintervall: es gilt  $\mu$  = 97,95 kV und  $\sigma$  = 5,29 kV

1-%-Wert der Durchschlagspannung mit 90-%-Vertrauensintervall

$$F(x = \mu - 2,326 \cdot \sigma) = 0,01 = 1\%$$
  
 $U_{D.1\%} = \mu - 2,326 \cdot \sigma$ 

 $U_{D,1\%}$  = 97,95 kV - 2,326·5,29 kV = 85,64 kV



Empirische Verteilungsfunktion  $h(U_D)$  und Gauß'sche Normalverteilung  $F_N$  für  $\sigma^2 = 27,97$  kV sowie  $\mu_1 = 97,95$  kV und  $\mu_2 = 100,99$  kV

## Elektrische Festigkeit von gasförmigen Isolierstoffen



## I/U-Kennlinie, Übergang von der selbständigen zur unselbständigen Entladung

Im Gas entstehen Ladungsträger (Elektronen, positive Ionen):

- Einwirkung von Strahlung (Photoionisation)
- Stoßprozesse aufgrund von Wärmebewegung
   Steigert man die Spannung (elektrische Feldstärke)
   zwischen den Elektroden, so fließt ein Strom

1~U



Alle Ladungsträger, die entstehen, werden durch das elektrische Feld ausgeräumt – bis ein Sättigungsstrom  $I_0$  erreicht wird ( $\Rightarrow$  unselbständige Entladung)

Bei noch weiterer Steigerung des elektrischen Feldes nehmen die Ladungsträger so viel kinetische Energie auf, dass durch Stoßionisation neue Ladungsträger entstehen (⇒ selbständige Entladung)

## Elektrische Festigkeit von gasförmigen Isolierstoffen



#### Soßionisation:

Strom steigt sehr stark an, während die Spannung nahezu konstant bleibt

#### Homogenes Feld:

Erreichen der Zündspannung der Stoßionisation führt sofort zum Durchschlag

$$U_Z = U_d$$

Zündspannung = Durchschlagspannung

#### Inhomogenes Feld:

Erreichen der Zündspannung führt zu einer stabilen Entladung, nicht sofort zum Durchschlag

$$U_Z < U_d$$
  $U_Z = U_E$ 

$$U_7 = U_F$$

Zündspannung = TE-Einsatzspannung

|                                                                                                          | Homogenes und schwach inho-<br>mogenes Feld                                                                                                               | Inhomogenes Feld                                                                       | Grenzflächen                                                              | Hohlräume       |  |  |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|--|--|--|
| Vorentladungen (Teilentladungen) Entladungen, die nicht unmittelbar zum Durchschlag                      |                                                                                                                                                           |                                                                                        | Außenleiter  feste Isolation  Innen- leiter                               | feste Isolation |  |  |  |
| (Spannungszusammenbruch) führen.                                                                         | treten nicht auf,<br>Entladungseinsatz<br>führt unmittelbar<br>zum Durchschlag                                                                            | Koronaentladungen Äußere Teilent Glimmentladung Büschel- und Stielb (Streamer- und Lea | Hohlraum-<br>Entladung<br>Innere Teil-<br>entladungen (TE)<br>("Glimmen") |                 |  |  |  |
| Durchschlag, Überschlag  Entladung, die eine gut leitfähige Verbindung zwischen den Elektroden herstellt | Durch                                                                                                                                                     | schlag                                                                                 | Überschlag                                                                | Durchschlag     |  |  |  |
| und damit zum Zu-<br>sammenbruch der<br>Spannung führt.                                                  | Lichtbogen, Bogenentladung (bei thermischem Gleichgewicht) Funken (bei begrenztem Energievorrat der Quelle)  Blitzentladungen Gleitfunken Teilentladungs- |                                                                                        |                                                                           |                 |  |  |  |

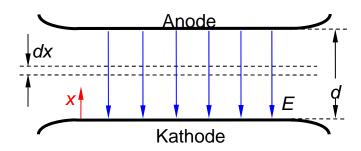
# **Entladungsmechanismen: Generationenmechanismus nach Townsend**

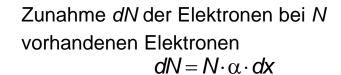


<u>α-Prozess:</u> Anfangselektron (z. B. durch äußere UV-Strahlung)

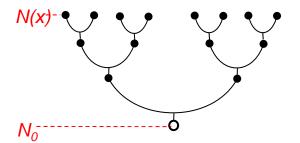
Im elektrischen Feld nimmt es kinetische Energie auf, so lange, bis es beim Stoß mit einem Gasmolekül zur Stoßionisiation kommt

- ⇒ weitere Elektronen, die auch wieder Stoßionisationen hervorrufen
- ⇒ Elektronenlawine





$$N(x) = N_0 \cdot e^{\alpha \cdot x}$$



 $\alpha$ : 1. Townsend'sche Koeffizient im homogenen elektrischen Feld ist  $\alpha$  = const.

*N*<sub>0</sub> Anfangselektronen, Elektrodenabstand *d*:

$$N_1 = N_0 \cdot e^{\alpha \cdot d} - N_0 = N_0 \cdot \left(e^{\alpha \cdot d} - 1\right)$$
 Elektronen werden erzeugt

## Entladungsmechanismen: Generationenmechanismus nach Townsend



<u>γ-Prozess:</u> positive Ionen werden im elektrischen Feld beschleunigt und lösen Sekundärelektronen aus der Kathode aus

N<sub>0</sub> Anfangselektronen, Elektrodenabstand d:

$$N_1 = N_0 \cdot e^{\alpha \cdot d} - N_0 = N_0 \cdot (e^{\alpha \cdot d} - 1)$$
 Elektronen werden erzeugt

γ: Zahl der aus der Kathode herausgelösten Elektronen pro Ionen-Elementarladung

$$N_{sek} = \gamma \cdot N_0 \cdot (e^{\alpha \cdot d} - 1)$$
 Sekundär-Elektronen werden erzeugt

Durchschlag, falls Zahl der Sekundärelektronen  $N_{sek}$  größer als Zahl  $N_0$  der Anfangselektronen

$$N_{\text{sek}} > N_0$$
 und damit  $\gamma \cdot (e^{\alpha \cdot d} - 1) > 1$ 

Zündbedingung nach Townsend im homogenen Feld

$$\alpha \cdot d \ge \ln \left(1 + \frac{1}{\gamma}\right) = k$$

im inhomogenen Feld

$$\int_{x=0}^{d} \alpha(x) \cdot dx \ge \ln\left(1 + \frac{1}{\gamma}\right) = k$$

*k* ist vom Gas und vom Elektrodenmaterial abhängig;

für Luft unter Normaldruck und metallische Elektroden wurde empirisch k = 7 ( $\gamma = 9,13\cdot10^{-4}$ ) ermittelt

#### **Paschen-Gesetz: Theorie**



- Gaskinetik (Stoßvorgänge zwischen Elektronen/Ionen und Molekülen)
- Betrachtung der Bewegung von Ladungsträgern im elektrischen Feld und ihre Energieaufnahme
- Zündbedingung nach Townsend

führt auf

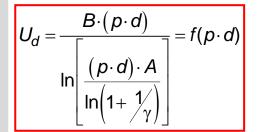
$$\frac{\alpha}{p} = A \cdot e^{\frac{B}{\left(\frac{E}{p}\right)}}$$

$$E \Rightarrow E_d = \frac{U_d}{d}$$

$$\alpha \cdot d \ge \ln\left(1 + \frac{1}{\gamma}\right) = k$$

$$E \Rightarrow E_d = \frac{U_d}{d}$$

$$\alpha \cdot d \ge \ln \left( 1 + \frac{1}{\gamma} \right) = k$$



Luft bei 20 °C:

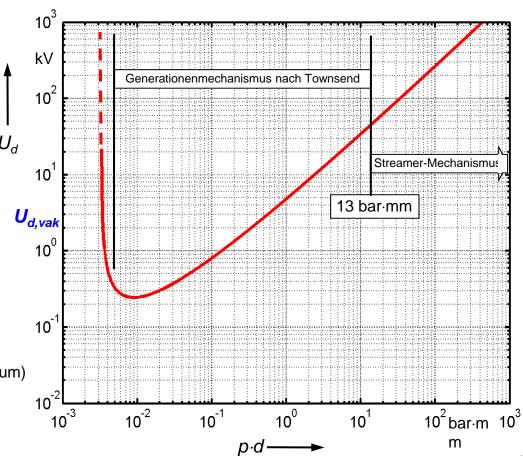
 $A = 1130 \text{ 1/(mm \cdot bar)}$ 

 $B = 27.4 \text{ kV/(mm \cdot bar)}$ 

 $\gamma = 0.035$  (Luft/Aluminium)

 $\gamma = 0.025$  (Luft/Kupfer)

 $\gamma = 0.02$  (Luft/Eisen)



## **Paschen-Gesetz: Vergleich Theorie - Praxis**



#### Theorie:

bei sehr geringen Werten für  $(p \cdot d)$  wird  $U_d$  theoretisch unendlich groß

$$U_{d} = \frac{B \cdot (p \cdot d)}{\ln \left[ \frac{(p \cdot d) \cdot A}{\ln \left(1 + \frac{1}{\gamma}\right)} \right]} = f(p \cdot d)$$

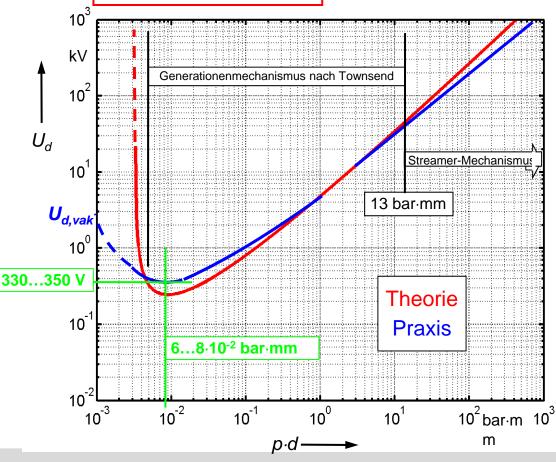
#### Praxis:

Vakuumdurchschlag bei niedrigem Druck

 $\Rightarrow$  endliche Durchschlagspannung  $oldsymbol{U_{d,vak}}$ 

Niedrigste Durchschlagspannung  $U_d = 330...350 \text{ V}$ bei  $p \cdot d = 6...8 \cdot 10^{-2} \text{ bar} \cdot \text{mm}$ 

Bereich großer Werte für *p·d*:
Oberflächenrauhigkeit der Elektroden
(Grate, Kratzer, etc.) verringert
die Spannungsfestigkeit
(lokal überhöhte Feldstärke)



### **Entladungsmechanismen: Streamer-Mechanismus**



#### Problem der Theorie nach Townsend:

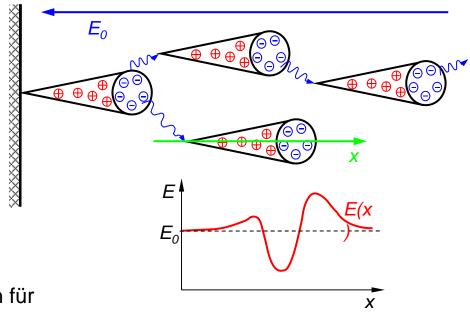
- der schnelle Durchschlag bei großen Werten für  $(p \cdot d)$  ist nicht erklärbar
- Bei einer Elektronenzahl > 106...108 nimmt das Feld der Lawine Einfluß auf das Gesamtfeld

positive Ionen sind schwerer und damit langsamer als Elektronen

- ⇒ positiv geladener Lawinenschweif
- ⇒ negativ geladener Lawinenkopf

#### Streamer-Mechanismus:

- Starke Feldüberhöhung am Kopf der Lawine
- Erhöhung der Zahl der Stoßionisationen
- UV-Emission
- Photoionisation, dadurch Anfangselektronen für Sekundärlawinen



Zusammenwirken aller Elektronenlawinen: leitfähiger Kanal ⇒ Kanalentladung, Streamerentl.

### Bedingungen für Streamer-Mechanismus



• Zahl der Elektronen muß den kritischen Wert  $N_{krit}$  überschreiten

$$N_{krit} = 10^6...10^8$$

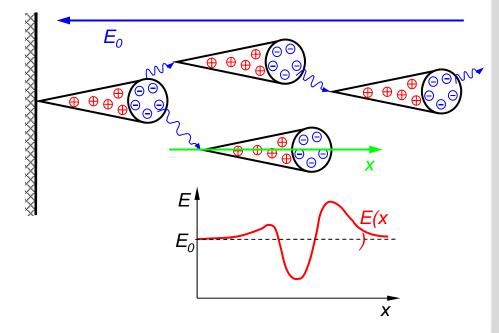
• Effektiver Stoßionisationskoeffizient muß sein  $\alpha_{\text{eff}} > 0$ 

Stoßionisationskoeffizient  $\alpha$  beschreibt die Entstehung von Elektronen bei Stoßprozessen

Ein Teil der Elektronen lagert sich an Moleküle an

 $\Rightarrow$  Anlagerungskoeffizient  $\eta$ 

$$\alpha_{eff} = \alpha - \eta$$



Grenzbedingung, unterhalb der kein Durchschlag mehr auftreten kann:

$$\left(\frac{E}{\rho}\right)_{\text{Luf}t} = 24,4 \frac{\text{kV}}{\text{bar} \cdot \text{cm}}$$
  $\left(\frac{E}{\rho}\right)_{\text{SF}_6} = 87,7 \frac{\text{kV}}{\text{bar} \cdot \text{cm}}$ 

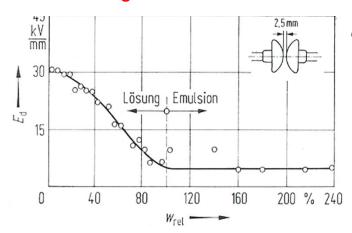
## Elektrische Festigkeit von flüssigen Isolierstoffen: Mineralöl



<u>Durchschlagmechanismen:</u> keine geschlossene Theorie wie beim Gasdurchschlag jedoch 2 wichtige Mechanismen, die den Durchschlag beeinflussen

- Faserbrückendurchschlag
- Wassergehalt

## Einfluss des Wassergehaltes auf den Durchschlag



 $U_d = E_d \cdot 2,5$ mm

Hochspannungstechnisch von Bedeutung:

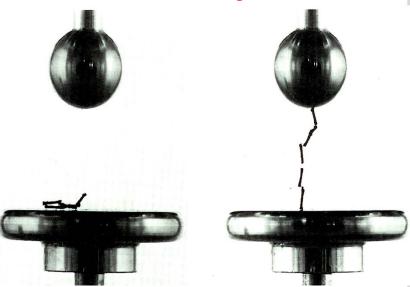
Bereich der Lösung

$$W_{rel} = \frac{W_{9m}}{W_{sat}}$$

mit

$$W_{sat} = f(\theta_m) \approx 10^{-\frac{1567}{273 + \theta_m} + 7,0895}$$
 ppm

#### Faserbrückendurchschlag



Mineralöl wird oft in Verbindung mit Papier (Zellulose) eingesetzt (Transformatoren)

⇒ im Öl befinden sich Zellulosefasern und Schmutzpartikel

# Elektrische Festigkeit von festen Isolierstoffen: rein elektrischer Durchschlag



#### 3 Durchschlagmechanismen:

- der rein elektrische Durchschlag
- der Wärmedurchschlag
- TE-Durchschlag infolge Alterung und Materialerosion

Rein elektrischer Durchschlag

Bändermodell der Festkörperphysik:

im Leitungsband eines Isolators befinden sich nahezu keine Elektronen

starkes elektrisches Feld

- ⇒ Auslösen von Elektronen aus dem Elektrodenmaterial
- ⇒ Verzerrung der Bänder, dadurch quantenmech.
   Tunneln möglich, Elektronen gelangen ins Leitungsband

# Elektrische Festigkeit von festen Isolierstoffen: Wärmedurchschlag



Wärmedurchschlag

Tritt auf, wenn die zugeführte Wärmeleistung  $P_{zu}$  dauerhaft größer ist, als die abgeführte Wärmeleistung  $P_{ab}$   $P_{zu} > P_{ab}$ 

zugeführte Wärmeleistung  $P_{zu}$ 

= dielektrische Verlustleistung  $P_{diel}$   $P_{zu} = P_{diel} + P_{s}$ 

+ zugeführte Stromwärmeleistung  $P_s$ 

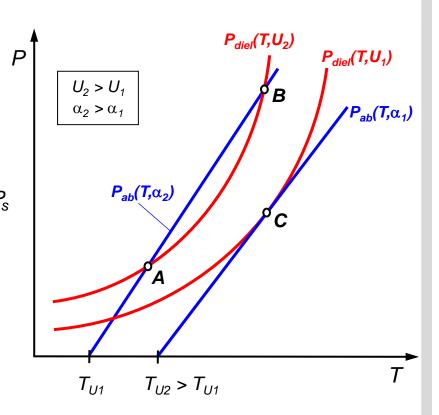
$$P_{diel} = \begin{cases} U^2 \cdot G = const. \cdot U^2 \cdot \kappa & \text{ für Gleichspannung} \\ U^2 \cdot \omega C \cdot \tan \delta & \text{ für Wechselspannung} \end{cases}$$

Temperaturabhängigkeit der Leitfähigkeit  $\kappa$  und des Verlustfaktors tan  $\delta$ 

$$\kappa$$
,  $\tan \delta \sim e^{A(T-T_0)}$  mit  $A > 0$ 

Isolierstoff gibt Wärme über die Kontaktfläche ab A: Kontaktfläche a: Wärmeübergangskoeffizient

$$P_{ab} = \alpha \cdot A \cdot (T - T_U)$$



Das System ist dann thermisch stabil, wenn die abgeführte Wärmeleistung mit der Temperaturänderung stärker ansteigt, als die zugeführte

Wärmeleistung (Arbeitspunkt A) 
$$\frac{\partial P_{ab}(T)}{\partial T} \ge \frac{\partial P_{zu}(T)}{\partial T}$$

### **Elektrische Teilentladungen (TE)**

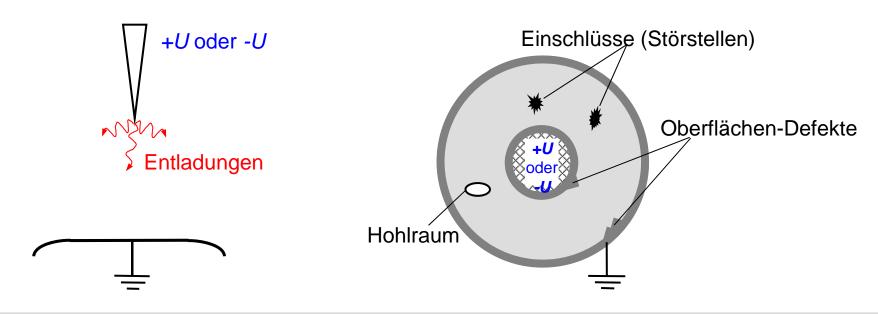


#### Physikalisches Phänomen "Teilentladung"

Lokale Überbeanspruchung des Isolierstoffes durch das elektrische Feld

⇒ Schnell ablaufende elektrische Entladungen

- Grund: stark inhomogene Felder, so daß das umgebende Isoliermaterial überbeansprucht wird
  - Bereiche mit homogenem Feld, jedoch starken Inhomogenitäten im Dielektrikum (Fehlstellen) und damit partiell reduzierter elektrischer Festigkeit

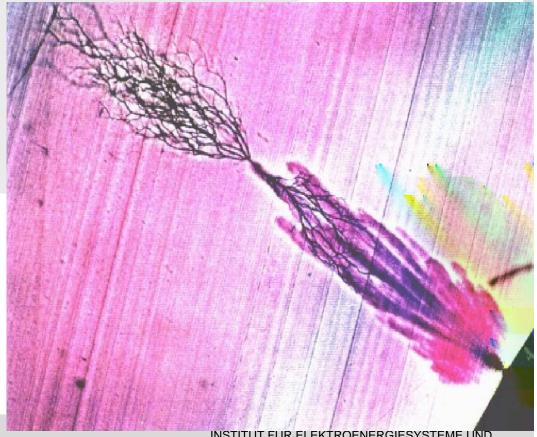


### **Elektrische Teilentladungen (TE)**



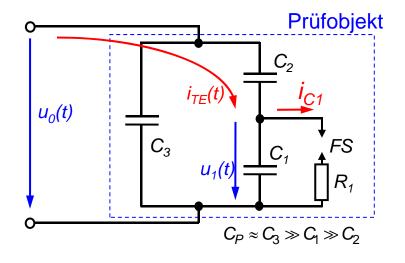
- TE in festen Isolierstoffen
   Materialerosion, TE schreitet immer weiter voran
   ⇒ TE in festen Isolierstoffen führt unweigerlich zum Durchschlag
- TE in flüssigen Isolierstoffen tritt oft in Form von Gasblasen auf

TE in flüssigen Isolierstoffen kann verlöschen, d. h. flüssige Isolierstoffe sind (bis zu einem gewissen Grad) selbstheilend



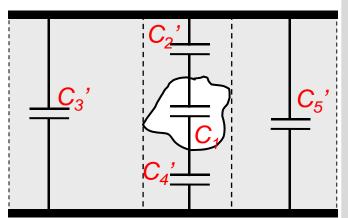
## **Ersatzschaltung eines Dielektrikums mit TE**

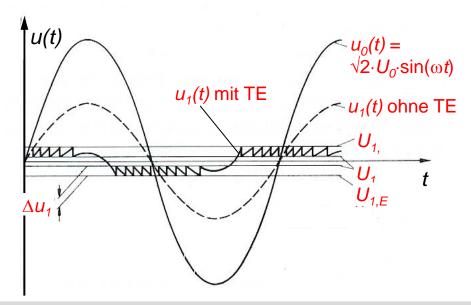




$$C_{ges} \approx C_3 \gg C_1 \gg C_2$$

$$q_{TE} = C_1 \cdot \Delta u_1$$
$$= \int_0^\infty i_{TE}(t) dt$$





- 1. Druckwelle, Materialerosion
- 2. Sichtbare Strahlung und UV-Strahlung
- 3. Chemische Zersetzung durch TE in Gasen
- 4. Chemische Zersetzung und dadurch Spaltprodukte bei TE in Flüssigkeiten
- 5. Elektromagnetische Strahlung und leitungsgebundene elektrische TE-Impulse